論文の概要: Advanced Consistency Restoration with Higher-Order Short-Cut Rules
- arxiv url: http://arxiv.org/abs/2312.09828v1
- Date: Fri, 15 Dec 2023 14:33:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 15:29:09.938349
- Title: Advanced Consistency Restoration with Higher-Order Short-Cut Rules
- Title(参考訳): 高次短周期規則による高度整合性回復
- Authors: Lars Fritsche, Jens Kosiol, Alexander Lauer, Adrian M\"oller, Andy
Sch\"urr
- Abstract要約: 我々は、同期中に、より複雑なSC規則をオンザフライで計算する手法を開発した。
これらの高階のSCルールは、複数の変更を1ステップで処理しなければならない場合に、より複雑なシナリオに対処することができます。
評価により、高次SCルールのオンザフライでの計算のオーバーヘッドは許容可能であり、時には全体的な性能も向上することが示された。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Sequential model synchronisation is the task of propagating changes from one
model to another correlated one to restore consistency. It is challenging to
perform this propagation in a least-changing way that avoids unnecessary
deletions (which might cause information loss). From a theoretical point of
view, so-called short-cut (SC) rules have been developed that enable provably
correct propagation of changes while avoiding information loss. However, to be
able to react to every possible change, an infinite set of such rules might be
necessary. Practically, only small sets of pre-computed basic SC rules have
been used, severely restricting the kind of changes that can be propagated
without loss of information. In this work, we close that gap by developing an
approach to compute more complex required SC rules on-the-fly during
synchronisation. These higher-order SC rules allow us to cope with more complex
scenarios when multiple changes must be handled in one step. We implemented our
approach in the model transformation tool eMoflon. An evaluation shows that the
overhead of computing higher-order SC rules on-the-fly is tolerable and at
times even improves the overall performance. Above that, completely new
scenarios can be dealt with without the loss of information.
- Abstract(参考訳): 逐次モデル同期は、あるモデルから別のモデルへの変化を伝播して一貫性を回復するタスクである。
不要な削除(情報損失を引き起こす可能性がある)を避けるため、この伝播を最小限の変更方法で実行することは困難である。
理論的観点からは、情報損失を回避しつつ変化の伝播を確実に補正するいわゆるショートカット(SC)ルールが開発されている。
しかし、可能なすべての変化に反応できるためには、そのようなルールの無限セットが必要であるかもしれない。
実際には、事前計算された基本的なSCルールの小さなセットのみが使われており、情報を失うことなく伝達できる変更の種類を厳しく制限している。
本研究は、同期中に必要となるSCルールをオンザフライで計算するアプローチを開発することで、そのギャップを埋めるものである。
これらの高階のSCルールは、複数の変更を1ステップで処理しなければならない場合に、より複雑なシナリオに対処することができます。
モデル変換ツールeMoflonにアプローチを実装しました。
評価により、高次SCルールのオンザフライでの計算のオーバーヘッドは許容可能であり、時には全体的な性能も向上することが示された。
その上、情報を失うことなく、完全に新しいシナリオを扱うことができる。
関連論文リスト
- Disperse-Then-Merge: Pushing the Limits of Instruction Tuning via Alignment Tax Reduction [75.25114727856861]
大規模言語モデル(LLM)は、スーパービジョンされた微調整プロセスの後半で劣化する傾向にある。
この問題に対処するための単純な分散結合フレームワークを導入する。
我々のフレームワークは、一連の標準知識と推論ベンチマークに基づいて、データキュレーションや正規化の訓練など、様々な高度な手法より優れています。
論文 参考訳(メタデータ) (2024-05-22T08:18:19Z) - OrCo: Towards Better Generalization via Orthogonality and Contrast for Few-Shot Class-Incremental Learning [57.43911113915546]
FSCIL(Few-Shot Class-Incremental Learning)は、問題空間を限られたデータで拡張するパラダイムを導入する。
FSCILの手法は、データが漸進的に到着するにつれて、破滅的な忘れ込みの課題に直面している。
表現空間における特徴の直交性と対照的な学習という2つの基本原理に基づいて構築されたOrCoフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T13:30:48Z) - Boosting Adversarial Training via Fisher-Rao Norm-based Regularization [9.975998980413301]
本稿では,ロバスト性と精度のトレードオフを軽減するため,LOAT(Logit-Oriented Adversarial Training)と呼ばれる新たな正規化フレームワークを提案する。
実験により,提案した正規化戦略により,有意な対向学習アルゴリズムの性能が向上することを示した。
論文 参考訳(メタデータ) (2024-03-26T09:22:37Z) - RESTORE: Towards Feature Shift for Vision-Language Prompt Learning [33.13407089704543]
ここでは,CLIPの1つの分岐のみに沿った即時チューニングが,誤調整の発生の原因であることを示す。
学習可能なパラメータをさまざまなモダリティで適切に正規化することなく、迅速な学習は元の事前学習制約に違反する。
クロスモーダルな一貫性に明示的な制約を課すマルチモーダルなプロンプト学習手法であるRESTOREを提案する。
論文 参考訳(メタデータ) (2024-03-10T08:52:48Z) - Training Chain-of-Thought via Latent-Variable Inference [30.21067593018967]
大規模言語モデル(LLM)は、チェーン・オブ・シンクレットのプロンプトを使って解答ステップを実行するように指示されたときに、より正確かつ解釈可能な問題を解決する。
CoTと教師付きチューニングを組み合わせるには、正しい回答だけでなく、それらの答えにつながる詳細な根拠の監督が必要である。
そこで本研究では,CoTプロンプトを用いて正しい回答を生成することで,電子対数類似度を最大化するための微調整戦略を提案する。
論文 参考訳(メタデータ) (2023-11-28T17:47:32Z) - Incorprating Prompt tuning for Commit classification with prior
Knowledge [0.76146285961466]
コミット分類(CC)はソフトウェアのメンテナンスにおいて重要なタスクである。
本稿では,事前知識を用いたコミット分類のためのプロンプトチューニングを組み込んだ生成フレームワークを提案する。
我々のフレームワークはCCの問題をシンプルに解決できるが、ほとんどショットやゼロショットのシナリオでは効果的に解決できる。
論文 参考訳(メタデータ) (2023-08-21T09:17:43Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
本稿では,継続的学習のための適応型分類基準を用いた教師付きコントラスト学習フレームワークを提案する。
実験により, CFLは最先端の性能を達成し, 分類基準に比べて克服する能力が強いことが示された。
論文 参考訳(メタデータ) (2023-05-20T19:22:40Z) - Automatic Rule Induction for Efficient Semi-Supervised Learning [56.91428251227253]
半教師付き学習は、少量のラベル付きデータからNLPモデルを一般化できることを約束している。
事前訓練されたトランスモデルはブラックボックス相関エンジンとして機能し、説明が困難であり、時には信頼性に欠ける振る舞いをする。
本稿では,これらの課題に,簡易かつ汎用的なフレームワークであるAutomatic Rule Injection (ARI) を用いて対処することを提案する。
論文 参考訳(メタデータ) (2022-05-18T16:50:20Z) - Learning Iterative Robust Transformation Synchronization [71.73273007900717]
グラフニューラルネットワーク(GNN)を用いて変換同期を学習することを提案する。
本研究では、ロバストな損失関数のハンドクラフトを回避するとともに、グラフニューラルネットワーク(GNN)を用いて変換同期を学習することを提案する。
論文 参考訳(メタデータ) (2021-11-01T07:03:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。