Learned Regularization for Inverse Problems: Insights from a Spectral Model
- URL: http://arxiv.org/abs/2312.09845v2
- Date: Tue, 4 Jun 2024 08:49:01 GMT
- Title: Learned Regularization for Inverse Problems: Insights from a Spectral Model
- Authors: Martin Burger, Samira Kabri,
- Abstract summary: This chapter provides a theoretically founded investigation of state-of-the-art learning approaches for inverse problems.
We give an extended definition of regularization methods and their convergence in terms of the underlying data distributions.
- Score: 1.4963011898406866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this chapter we provide a theoretically founded investigation of state-of-the-art learning approaches for inverse problems from the point of view of spectral reconstruction operators. We give an extended definition of regularization methods and their convergence in terms of the underlying data distributions, which paves the way for future theoretical studies. Based on a simple spectral learning model previously introduced for supervised learning, we investigate some key properties of different learning paradigms for inverse problems, which can be formulated independently of specific architectures. In particular we investigate the regularization properties, bias, and critical dependence on training data distributions. Moreover, our framework allows to highlight and compare the specific behavior of the different paradigms in the infinite-dimensional limit.
Related papers
- Geometric Understanding of Discriminability and Transferability for Visual Domain Adaptation [27.326817457760725]
Invariant representation learning for unsupervised domain adaptation (UDA) has made significant advances in computer vision and pattern recognition communities.
Recently, empirical connections between transferability and discriminability have received increasing attention.
In this work, we systematically analyze the essentials of transferability and discriminability from the geometric perspective.
arXiv Detail & Related papers (2024-06-24T13:31:08Z) - Learned reconstruction methods for inverse problems: sample error
estimates [0.8702432681310401]
This dissertation addresses the generalization properties of learned reconstruction methods, and specifically to perform their sample error analysis.
A rather general strategy is proposed, whose assumptions are met for a large class of inverse problems and learned methods.
arXiv Detail & Related papers (2023-12-21T17:56:19Z) - Applying statistical learning theory to deep learning [21.24637996678039]
The goal of these lectures is to provide an overview of some of the main questions that arise when attempting to understand deep learning.
We discuss implicit bias in the context of benign overfitting.
We provide a detailed study of the implicit bias of gradient descent on linear diagonal networks for various regression tasks.
arXiv Detail & Related papers (2023-11-26T20:00:53Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
We propose an alternative spectral method, Spectral Decomposition Representation (SPEDER), that extracts a state-action abstraction from the dynamics without inducing spurious dependence on the data collection policy.
A theoretical analysis establishes the sample efficiency of the proposed algorithm in both the online and offline settings.
An experimental investigation demonstrates superior performance over current state-of-the-art algorithms across several benchmarks.
arXiv Detail & Related papers (2022-08-19T19:01:30Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
arXiv Detail & Related papers (2022-03-31T10:36:50Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
We propose a novel learnable general-purpose regularizer exploiting recent architectural design patterns from deep learning.
We show state-of-the-art performance for classical image restoration and medical image reconstruction problems.
arXiv Detail & Related papers (2020-01-14T19:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.