The Limits of Fair Medical Imaging AI In The Wild
- URL: http://arxiv.org/abs/2312.10083v1
- Date: Mon, 11 Dec 2023 18:59:50 GMT
- Title: The Limits of Fair Medical Imaging AI In The Wild
- Authors: Yuzhe Yang, Haoran Zhang, Judy W Gichoya, Dina Katabi, Marzyeh
Ghassemi
- Abstract summary: We investigate the extent to which medical AI utilizes demographic encodings.
We confirm that medical imaging AI leverages demographic shortcuts in disease classification.
We find that models with less encoding of demographic attributes are often most "globally optimal"
- Score: 43.97266228706059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As artificial intelligence (AI) rapidly approaches human-level performance in
medical imaging, it is crucial that it does not exacerbate or propagate
healthcare disparities. Prior research has established AI's capacity to infer
demographic data from chest X-rays, leading to a key concern: do models using
demographic shortcuts have unfair predictions across subpopulations? In this
study, we conduct a thorough investigation into the extent to which medical AI
utilizes demographic encodings, focusing on potential fairness discrepancies
within both in-distribution training sets and external test sets. Our analysis
covers three key medical imaging disciplines: radiology, dermatology, and
ophthalmology, and incorporates data from six global chest X-ray datasets. We
confirm that medical imaging AI leverages demographic shortcuts in disease
classification. While correcting shortcuts algorithmically effectively
addresses fairness gaps to create "locally optimal" models within the original
data distribution, this optimality is not true in new test settings.
Surprisingly, we find that models with less encoding of demographic attributes
are often most "globally optimal", exhibiting better fairness during model
evaluation in new test environments. Our work establishes best practices for
medical imaging models which maintain their performance and fairness in
deployments beyond their initial training contexts, underscoring critical
considerations for AI clinical deployments across populations and sites.
Related papers
- The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
Social problems stemming from the shortage of radiologists are intensifying, and artificial intelligence is being highlighted as a potential solution.
Recently emerging large-scale generative AI has expanded from large language models (LLMs) to multi-modal models.
This scoping review systematically organizes existing literature on the clinical value of large-scale generative AI applications.
arXiv Detail & Related papers (2024-09-03T00:48:50Z) - Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning [33.9544297423474]
We present RayDINO, a large visual encoder trained by self-supervision on 873k chest X-rays.
We compare RayDINO to previous state-of-the-art models across nine radiology tasks, from classification and dense segmentation to text generation.
Our findings suggest that self-supervision allows patient-centric AI proving useful in clinical and interpreting X-rays holistically.
arXiv Detail & Related papers (2024-05-02T16:59:10Z) - Demographic Bias of Expert-Level Vision-Language Foundation Models in
Medical Imaging [13.141767097232796]
Self-supervised vision-language foundation models can detect a broad spectrum of pathologies without relying on explicit training annotations.
It is crucial to ensure that these AI models do not mirror or amplify human biases, thereby disadvantaging historically marginalized groups such as females or Black patients.
This study investigates the algorithmic fairness of state-of-the-art vision-language foundation models in chest X-ray diagnosis across five globally-sourced datasets.
arXiv Detail & Related papers (2024-02-22T18:59:53Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
We show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models.
We demonstrate that these learned augmentations can surpass ones by making models more robust and statistically fair in- and out-of-distribution.
arXiv Detail & Related papers (2023-04-18T18:15:38Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Self-supervised Multi-modal Training from Uncurated Image and Reports
Enables Zero-shot Oversight Artificial Intelligence in Radiology [31.045221580446963]
We present a model dubbed Medical Cross-attention Vision-Language model (Medical X-VL)
Our model enables various zero-shot tasks for oversight AI, ranging from the zero-shot classification to zero-shot error correction.
Our method was especially successful in the data-limited setting, suggesting the potential widespread applicability in medical domain.
arXiv Detail & Related papers (2022-08-10T04:35:58Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Reading Race: AI Recognises Patient's Racial Identity In Medical Images [9.287449389763413]
There is no known correlation for race on medical imaging that would be obvious to the human expert interpreting the images.
Standard deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities.
arXiv Detail & Related papers (2021-07-21T21:10:16Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.