論文の概要: Random Models for Fuzzy Clustering Similarity Measures
- arxiv url: http://arxiv.org/abs/2312.10270v1
- Date: Sat, 16 Dec 2023 00:07:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 17:37:40.974588
- Title: Random Models for Fuzzy Clustering Similarity Measures
- Title(参考訳): ファジィクラスタリング類似度尺度のランダムモデル
- Authors: Ryan DeWolfe and Jeffery L. Andrews
- Abstract要約: Adjusted Rand Index (ARI) は、ハードクラスタリングを比較するために広く使われている手法である。
本稿では,ハードクラスタリングとファジィクラスタリングの両方に対して直感的で説明可能な3つのランダムモデルを用いて,ARIを計算するための単一のフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Adjusted Rand Index (ARI) is a widely used method for comparing hard
clusterings, but requires a choice of random model that is often left implicit.
Several recent works have extended the Rand Index to fuzzy clusterings, but the
assumptions of the most common random model is difficult to justify in fuzzy
settings. We propose a single framework for computing the ARI with three random
models that are intuitive and explainable for both hard and fuzzy clusterings,
along with the benefit of lower computational complexity. The theory and
assumptions of the proposed models are contrasted with the existing permutation
model. Computations on synthetic and benchmark data show that each model has
distinct behaviour, meaning that accurate model selection is important for the
reliability of results.
- Abstract(参考訳): 適応ランダム指数(Adjusted Rand Index, ARI)は、ハードクラスタリングを比較するために広く使われている手法であるが、しばしば暗黙的に残されるランダムモデルを選択する必要がある。
ランドインデックスをファジィクラスタリングに拡張した最近の研究はいくつかあるが、最も一般的なランダムモデルの仮定はファジィ設定において正当化が難しい。
本稿では,ハードクラスタリングとファジィクラスタリングの両方に対して直感的かつ説明可能な3つのランダムモデルを持つariを計算するための単一フレームワークを提案する。
提案モデルの理論と仮定は、既存の置換モデルと対比される。
合成データとベンチマークデータの計算は、それぞれのモデルに異なる振る舞いがあり、結果の信頼性に正確なモデル選択が重要であることを示している。
関連論文リスト
- Predictive Modeling in the Reservoir Kernel Motif Space [0.9217021281095907]
本研究では,線形貯水池のカーネルビューに基づく時系列予測手法を提案する。
我々は、我々のアプローチがコア貯水池モデルとどのように関係しているかについての光を遮蔽するアプローチの幾何学的解釈を提供する。
実験では,提案モデルの予測性能と最近の最先端変圧器モデルとの比較を行った。
論文 参考訳(メタデータ) (2024-05-11T16:12:25Z) - Finite Mixtures of Multivariate Poisson-Log Normal Factor Analyzers for
Clustering Count Data [0.8499685241219366]
因子分析モデルの混合に基づく8種類の擬似混合モデルについて紹介する。
提案モデルはRNAシークエンシング研究から得られた離散的なデータをクラスタリングする文脈において探索される。
論文 参考訳(メタデータ) (2023-11-13T21:23:15Z) - Why the Rich Get Richer? On the Balancedness of Random Partition Models [1.776746672434207]
交換可能なランダム分割モデルのバランス性について検討する。
既存の多くのランダム分割モデルの「リッチ・ゲット・リッチ」特性は、2つの一般的な仮定の必然的な結果であることを示す。
また、「リッチ・ゲット・ポーラ」ランダムパーティションモデルを導入し、エンティティ・リゾリューション・タスクへの応用を解説する。
論文 参考訳(メタデータ) (2022-01-30T01:19:41Z) - Universal and data-adaptive algorithms for model selection in linear
contextual bandits [52.47796554359261]
モデル選択の最も単純な非自明な例を考える: 単純な多重武装バンディット問題と線形文脈バンディット問題とを区別する。
データ適応的な方法で探索する新しいアルゴリズムを導入し、$mathcalO(dalpha T1- alpha)$という形式の保証を提供する。
我々のアプローチは、いくつかの仮定の下で、ネストされた線形文脈包帯のモデル選択に拡張する。
論文 参考訳(メタデータ) (2021-11-08T18:05:35Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
提案したモデルは、従来のランダムユーティリティ仕様に代わるアプローチとして混合モデルを用いて潜在クラスを定式化する。
その結果,混合モデルにより潜在クラス選択モデル全体の性能が向上した。
論文 参考訳(メタデータ) (2020-07-06T13:19:26Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Pattern Similarity-based Machine Learning Methods for Mid-term Load
Forecasting: A Comparative Study [0.0]
パターン類似性に基づく年次電力需要予測手法について検討した。
モデルの不可欠な部分は、時系列シーケンスのパターンを用いた時系列表現である。
近接モデル,ファジィ近傍モデル,カーネル回帰モデル,一般回帰ニューラルネットワークの4つのモデルを考える。
論文 参考訳(メタデータ) (2020-03-03T12:14:36Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。