論文の概要: Finite Mixtures of Multivariate Poisson-Log Normal Factor Analyzers for
Clustering Count Data
- arxiv url: http://arxiv.org/abs/2311.07762v1
- Date: Mon, 13 Nov 2023 21:23:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 16:21:57.575577
- Title: Finite Mixtures of Multivariate Poisson-Log Normal Factor Analyzers for
Clustering Count Data
- Title(参考訳): 多変量ポアソン対数正規因子分析器のクラスタリング数データに対する有限混合
- Authors: Andrea Payne, Anjali Silva, Steven J. Rothstein, Paul D. McNicholas,
Sanjeena Subedi
- Abstract要約: 因子分析モデルの混合に基づく8種類の擬似混合モデルについて紹介する。
提案モデルはRNAシークエンシング研究から得られた離散的なデータをクラスタリングする文脈において探索される。
- 参考スコア(独自算出の注目度): 0.8499685241219366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A mixture of multivariate Poisson-log normal factor analyzers is introduced
by imposing constraints on the covariance matrix, which resulted in flexible
models for clustering purposes. In particular, a class of eight parsimonious
mixture models based on the mixtures of factor analyzers model are introduced.
Variational Gaussian approximation is used for parameter estimation, and
information criteria are used for model selection. The proposed models are
explored in the context of clustering discrete data arising from RNA sequencing
studies. Using real and simulated data, the models are shown to give favourable
clustering performance. The GitHub R package for this work is available at
https://github.com/anjalisilva/mixMPLNFA and is released under the open-source
MIT license.
- Abstract(参考訳): 多変量poisson-log正規因子分析器の混合は、共分散行列に制約を課すことで導入され、クラスタ化のための柔軟なモデルとなった。
特に、因子分析モデルの混合に基づく8つの調和混合モデルのクラスを導入する。
変分ガウス近似はパラメータ推定に使われ、情報基準はモデル選択に使用される。
提案モデルは,rnaシーケンシング研究から生じる離散データのクラスタリングの文脈で検討された。
実データとシミュレーションデータを用いて、モデルが好適なクラスタリング性能を示すことを示す。
この作業のためのgithub rパッケージは、https://github.com/anjalisilva/mixmplnfaで入手できる。
関連論文リスト
- Adaptive Transfer Clustering: A Unified Framework [2.3144964550307496]
本稿では,未知の相違点が存在する場合の共通性を自動的に活用するアダプティブ・トランスファー・クラスタリング(ATC)アルゴリズムを提案する。
これはガウス混合モデル、ブロックモデル、潜在クラスモデルを含む幅広い統計モデルに適用される。
論文 参考訳(メタデータ) (2024-10-28T17:57:06Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - A Bayesian Framework on Asymmetric Mixture of Factor Analyser [0.0]
本稿では、スキュー正規(無制限)一般化双曲型(SUNGH)分布のリッチで柔軟なクラスを持つMFAモデルを提案する。
SUNGHファミリーは、様々な方向の歪みをモデル化する柔軟性と、重み付きデータを可能にする。
因子分析モデルを考慮すると、SUNGHファミリーは誤差成分と因子スコアの両方の歪みと重みを許容する。
論文 参考訳(メタデータ) (2022-11-01T20:19:52Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - A new LDA formulation with covariates [3.1690891866882236]
ラテント・ディリクレ・アロケーション・モデルは混合メンバーシップ・クラスタを作成する一般的な方法である。
共変量を含むLDAモデルの新たな定式化を提案する。
モデルパラメータを推定するためにギブスサンプリングアルゴリズムを用いてスライスサンプリングを行う。
このモデルは,コロナウイルスのテキストマイニング,雑貨買い物かごの分析,バロコロラド島(パナマ)の樹木種の生態という,3つの異なる領域の実際のデータセットを用いて説明されている。
論文 参考訳(メタデータ) (2022-02-18T19:58:24Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
本稿では,局所凸型ユーザコストを用いた個人化フェデレーション学習のためのアルゴリズム群を提案する。
提案するフレームワークは,異なるユーザのモデルの違いをペナル化する凸クラスタリングの一般化に基づいている。
論文 参考訳(メタデータ) (2022-02-01T19:25:31Z) - Vine copula mixture models and clustering for non-Gaussian data [0.0]
連続データのための新しいブドウパウラ混合モデルを提案する。
本研究では, モデルベースクラスタリングアルゴリズムにおいて, ベインコプラ混合モデルが他のモデルベースクラスタリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-05T16:04:26Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Robust M-Estimation Based Bayesian Cluster Enumeration for Real
Elliptically Symmetric Distributions [5.137336092866906]
データセットにおける最適なクラスタ数のロバストな決定は、広範囲のアプリケーションにおいて必須の要素である。
本稿では任意のReally Symmetric(RES)分散混合モデルで使用できるように一般化する。
サンプルサイズが有限であるデータセットに対して,ロバストな基準を導出するとともに,大規模なサンプルサイズでの計算コスト削減のための近似を提供する。
論文 参考訳(メタデータ) (2020-05-04T11:44:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。