Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge
- URL: http://arxiv.org/abs/2312.10299v2
- Date: Sat, 18 May 2024 03:46:52 GMT
- Title: Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge
- Authors: Conghan Yue, Zhengwei Peng, Junlong Ma, Shiyan Du, Pengxu Wei, Dongyu Zhang,
- Abstract summary: We introduce the Generalized Ornstein-Uhlenbeck Bridge (GOUB) model.
By leveraging the natural mean-reverting property of the generalized OU process, we achieve diffusion mappings from point to point.
We also present the corresponding Mean-ODE model adept at capturing both pixel-level details and structural perceptions.
- Score: 13.610545398309464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models exhibit powerful generative capabilities enabling noise mapping to data via reverse stochastic differential equations. However, in image restoration, the focus is on the mapping relationship from low-quality to high-quality images. Regarding this issue, we introduce the Generalized Ornstein-Uhlenbeck Bridge (GOUB) model. By leveraging the natural mean-reverting property of the generalized OU process and further eliminating the variance of its steady-state distribution through the Doob's h-transform, we achieve diffusion mappings from point to point enabling the recovery of high-quality images from low-quality ones. Moreover, we unravel the fundamental mathematical essence shared by various bridge models, all of which are special instances of GOUB and empirically demonstrate the optimality of our proposed models. Additionally, we present the corresponding Mean-ODE model adept at capturing both pixel-level details and structural perceptions. Experimental outcomes showcase the state-of-the-art performance achieved by both models across diverse tasks, including inpainting, deraining, and super-resolution. Code is available at \url{https://github.com/Hammour-steak/GOUB}.
Related papers
- Enhanced Control for Diffusion Bridge in Image Restoration [4.480905492503335]
A special type of diffusion bridge model has achieved more advanced results in image restoration.
This paper introduces the ECDB model enhancing the control of the diffusion bridge with low-quality images as conditions.
Experimental results prove that the ECDB model has achieved state-of-the-art results in many image restoration tasks.
arXiv Detail & Related papers (2024-08-29T07:09:33Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Deep Equilibrium Approaches to Diffusion Models [1.4275201654498746]
Diffusion-based generative models are extremely effective in generating high-quality images.
These models typically require long sampling chains to produce high-fidelity images.
We look at diffusion models through a different perspective, that of a (deep) equilibrium (DEQ) fixed point model.
arXiv Detail & Related papers (2022-10-23T22:02:19Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model.
An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution.
The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
arXiv Detail & Related papers (2021-09-13T12:45:08Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.