論文の概要: When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning
- arxiv url: http://arxiv.org/abs/2312.10372v1
- Date: Sat, 16 Dec 2023 08:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 16:50:30.517271
- Title: When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning
- Title(参考訳): グラフデータがマルチモーダルに出会うとき:グラフ理解と推論の新しいパラダイム
- Authors: Qihang Ai, Jianwu Zhou, Haiyun Jiang, Lemao Liu, Shuming Shi
- Abstract要約: 本稿では,画像エンコーディングとマルチモーダル技術を統合することで,グラフデータの理解と推論を行う新しいパラダイムを提案する。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、特に中国のOCRパフォーマンスと複雑な推論タスクにおいて、モデルの強みと弱みを強調した。
- 参考スコア(独自算出の注目度): 54.84870836443311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph data is ubiquitous in the physical world, and it has always been a
challenge to efficiently model graph structures using a unified paradigm for
the understanding and reasoning on various graphs. Moreover, in the era of
large language models, integrating complex graph information into text
sequences has become exceptionally difficult, which hinders the ability to
interact with graph data through natural language instructions.The paper
presents a new paradigm for understanding and reasoning about graph data by
integrating image encoding and multimodal technologies. This approach enables
the comprehension of graph data through an instruction-response format,
utilizing GPT-4V's advanced capabilities. The study evaluates this paradigm on
various graph types, highlighting the model's strengths and weaknesses,
particularly in Chinese OCR performance and complex reasoning tasks. The
findings suggest new direction for enhancing graph data processing and natural
language interaction.
- Abstract(参考訳): グラフデータは物理世界ではユビキタスであり、様々なグラフの理解と推論のために統一されたパラダイムを用いてグラフ構造を効率的にモデル化することは常に困難である。
さらに,大規模言語モデルの時代には,複雑なグラフ情報をテキストシーケンスに組み込むことが極めて難しくなり,自然言語によるグラフデータ操作が困難になり,画像エンコーディングとマルチモーダル技術を統合することにより,グラフデータの理解と推論を行う新たなパラダイムが提案されている。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、モデルの強みと弱み、特に中国のocrパフォーマンスと複雑な推論タスクを強調する。
その結果,グラフデータ処理と自然言語対話の新たな方向性が示唆された。
関連論文リスト
- Exploring Graph Structure Comprehension Ability of Multimodal Large Language Models: Case Studies [7.067145619709089]
本研究では,グラフの可視化が大規模言語モデル(LLM)の性能に与える影響について検討する。
本実験は,純粋テキストグラフ表現に対するマルチモーダルアプローチの有効性を比較した。
論文 参考訳(メタデータ) (2024-09-13T14:26:58Z) - GraphWiz: An Instruction-Following Language Model for Graph Problems [39.656196336071275]
GraphInstructは、言語モデルに明示的な推論パスを用いて、幅広いグラフ問題に対処する機能を持たせるために設計されたデータセットである。
GraphWizは、明確な推論プロセスを生成しながら、さまざまなグラフ問題タイプを解決できるオープンソースの言語モデルです。
拡張モデルであるGraphWiz-DPOは、9つのタスクで平均65%の精度を達成し、GPT-4を平均43.8%上回っている。
論文 参考訳(メタデータ) (2024-02-25T08:41:32Z) - Which Modality should I use -- Text, Motif, or Image? : Understanding Graphs with Large Language Models [14.251972223585765]
本稿では,テキスト,画像,モチーフなどの多様性を持つグラフを符号化する新たな手法を提案する。
また、グラフ構造解析において、LLM(Large Language Models)を評価するための新しいベンチマークであるGraphTMIも提示されている。
論文 参考訳(メタデータ) (2023-11-16T12:45:41Z) - Talk like a Graph: Encoding Graphs for Large Language Models [15.652881653332194]
大規模言語モデル(LLM)による消費用テキストとしてグラフ構造化データを符号化する最初の包括的研究について検討する。
グラフ解析におけるLCMの性能は,(1)グラフ符号化法,(2)グラフ処理自体の性質,(3)興味深いことに,考慮されたグラフの構造の3つの基本レベルによって異なることを示す。
論文 参考訳(メタデータ) (2023-10-06T19:55:21Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
ChatGPTのような大規模言語モデルは、人工知能にとって欠かせないものとなっている。
本研究では,グラフデータの解釈において,LLMの精度を評価するための調査を行う。
この知見は,言語モデルとグラフ理解のギャップを埋めるための貴重な洞察に寄与する。
論文 参考訳(メタデータ) (2023-05-24T11:53:19Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。