論文の概要: From Dialogue to Diagram: Task and Relationship Extraction from Natural
Language for Accelerated Business Process Prototyping
- arxiv url: http://arxiv.org/abs/2312.10432v1
- Date: Sat, 16 Dec 2023 12:35:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 16:42:55.405409
- Title: From Dialogue to Diagram: Task and Relationship Extraction from Natural
Language for Accelerated Business Process Prototyping
- Title(参考訳): 対話からダイアグラムへ:加速ビジネスプロセスプロトタイピングのための自然言語からのタスクと関係抽出
- Authors: Sara Qayyum, Muhammad Moiz Asghar, Muhammad Fouzan Yaseen
- Abstract要約: 本稿では、依存性解析と名前付きエンティティ認識(NER)の利用を、我々のアプローチの中心とする現代的ソリューションを紹介します。
我々は,行動関係の同定にSVO(Subject-Verb-Object)構造を用い,コンテキスト理解のためのWordNetなどの意味分析ツールを統合する。
このシステムはデータ変換と視覚化を十分に処理し、冗長に抽出された情報をBPMN(Business Process Model and Notation)ダイアグラムに変換する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The automatic transformation of verbose, natural language descriptions into
structured process models remains a challenge of significant complexity - This
paper introduces a contemporary solution, where central to our approach, is the
use of dependency parsing and Named Entity Recognition (NER) for extracting key
elements from textual descriptions. Additionally, we utilize
Subject-Verb-Object (SVO) constructs for identifying action relationships and
integrate semantic analysis tools, including WordNet, for enriched contextual
understanding. A novel aspect of our system is the application of neural
coreference resolution, integrated with the SpaCy framework, enhancing the
precision of entity linkage and anaphoric references. Furthermore, the system
adeptly handles data transformation and visualization, converting extracted
information into BPMN (Business Process Model and Notation) diagrams. This
methodology not only streamlines the process of capturing and representing
business workflows but also significantly reduces the manual effort and
potential for error inherent in traditional modeling approaches.
- Abstract(参考訳): 本稿では,テキスト記述から重要な要素を抽出するための依存性解析と名前付きエンティティ認識(NER)を,我々のアプローチの中心とする現代的ソリューションを紹介する。
さらに,行動関係の同定にSVO(Subject-Verb-Object)構造を用い,コンテキスト理解のためのWordNetなどの意味分析ツールを統合する。
このシステムの新しい側面は、SpaCyフレームワークと統合されたニューラルコア参照解決の応用であり、エンティティリンケージとアナフォリック参照の精度を高めている。
さらに、システムはデータ変換と視覚化を積極的に処理し、抽出した情報をBPMN(Business Process Model and Notation)ダイアグラムに変換する。
この方法論は、ビジネスワークフローの取得と表現のプロセスを合理化するだけでなく、従来のモデリングアプローチに固有の手作業やエラーの可能性を大幅に削減します。
関連論文リスト
- GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction [3.579132482505273]
自然言語処理(NLP)における情報抽出は重要な課題である
グラフ構造学習(GSL)として定式化する手法を提案する。
この定式化により、エンティティとリレーショナル予測のためのより良い相互作用と構造インフォームド決定が可能になる。
論文 参考訳(メタデータ) (2024-04-18T20:09:37Z) - Injecting linguistic knowledge into BERT for Dialogue State Tracking [60.42231674887294]
本稿では,教師なしの枠組みを用いて言語知識を抽出する手法を提案する。
次に、この知識を用いて、対話状態追跡(DST)タスクにおけるBERTの性能と解釈可能性を高める。
このフレームワークを様々なDSTタスクでベンチマークし、精度の顕著な改善を観察する。
論文 参考訳(メタデータ) (2023-11-27T08:38:42Z) - 'What are you referring to?' Evaluating the Ability of Multi-Modal
Dialogue Models to Process Clarificational Exchanges [65.03196674816772]
参照表現が宛先に対して意図された参照を一意に識別しない場合、参照の曖昧さが対話で生じる。
出席者は、通常、そのような曖昧さをすぐに検知し、メタコミュニケーション、明確化取引所(CE: Meta-communicative, Clarification Exchanges)を使用して、話者と作業する。
ここでは、CRを生成・応答する能力は、マルチモーダルな視覚的基盤を持つ対話モデルのアーキテクチャと目的関数に特定の制約を課していると論じる。
論文 参考訳(メタデータ) (2023-07-28T13:44:33Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
本稿では,外部知識の整合化と冗長なプロセスの排除にテキストインタフェースを用いた新しいパラダイムを提案する。
我々は、MultiWOZ-Remakeを用いて、MultiWOZデータベース用に構築されたインタラクティブテキストインタフェースを含む、我々のパラダイムを実演する。
論文 参考訳(メタデータ) (2023-05-23T05:48:21Z) - Beyond Rule-based Named Entity Recognition and Relation Extraction for
Process Model Generation from Natural Language Text [0.0]
既存のパイプラインを拡張して、完全にデータ駆動にします。
改善されたパイプラインの競争力を示す。これは、機能エンジニアリングとルール定義に関連するかなりのオーバーヘッドを取り除くだけでなく、改善されたパイプラインの競争力も排除します。
本稿では,言語参照に関する情報を取り入れたPETデータセットの拡張と,それを解決する方法を提案する。
論文 参考訳(メタデータ) (2023-05-06T07:06:47Z) - PET: A new Dataset for Process Extraction from Natural Language Text [15.16406344719132]
我々は、アクティビティ、ゲートウェイ、アクター、フロー情報に注釈を付けた、ビジネスプロセス記述の最初のコーパスを開発する。
我々は、アノテーションスキーマとガイドラインの詳細な概要や、テキストからビジネスプロセスを抽出することの難しさと難しさをベンチマークするための様々なベースラインを含む、新しいリソースを提示する。
論文 参考訳(メタデータ) (2022-03-09T16:33:59Z) - Out of Context: A New Clue for Context Modeling of Aspect-based
Sentiment Analysis [54.735400754548635]
ABSAは、与えられた側面に関してレビューで表現された感情を予測することを目的としている。
与えられたアスペクトは、コンテキストモデリングプロセスにおけるコンテキストからの新たなヒントと見なされるべきである。
異なるバックボーンに基づいて複数のアスペクト認識コンテキストエンコーダを設計する。
論文 参考訳(メタデータ) (2021-06-21T02:26:03Z) - End-to-End Hierarchical Relation Extraction for Generic Form
Understanding [0.6299766708197884]
本稿では,エンティティ検出とリンク予測を併用する新しいディープニューラルネットワークを提案する。
本モデルでは,複数段階の意図的U-Netアーキテクチャを拡張し,リンク予測のための部分強度場と部分連想場を拡張した。
本稿では,ノイズの多い文書データセットの形式理解におけるモデルの有効性を示す。
論文 参考訳(メタデータ) (2021-06-02T06:51:35Z) - GRIT: Generative Role-filler Transformers for Document-level Event
Entity Extraction [134.5580003327839]
本稿では、文書レベルでコンテキストをモデル化するための生成トランスフォーマーベースのエンコーダデコーダフレームワーク(GRIT)を紹介する。
我々は,MUC-4データセットに対する我々のアプローチを評価し,我々のモデルが先行作業よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-08-21T01:07:36Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z) - Automatic Business Process Structure Discovery using Ordered Neurons
LSTM: A Preliminary Study [6.6599132213053185]
本稿では,ニューラルネットワークの構築により,ビジネスプロセス文書に存在する潜在意味階層構造を検索する。
我々は,実践的なロボットプロセス自動化(RPA)プロジェクトから提案したプロセス記述文書(PDD)のデータセットに対するアプローチを検証した。
論文 参考訳(メタデータ) (2020-01-05T14:19:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。