論文の概要: Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems
- arxiv url: http://arxiv.org/abs/2305.13710v1
- Date: Tue, 23 May 2023 05:48:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 18:43:44.803432
- Title: Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems
- Title(参考訳): タスク指向対話システムにおけるテキストインタフェースによる外部知識の調整
- Authors: Qingyang Wu, Deema Alnuhait, Derek Chen, Zhou Yu
- Abstract要約: 本稿では,外部知識の整合化と冗長なプロセスの排除にテキストインタフェースを用いた新しいパラダイムを提案する。
我々は、MultiWOZ-Remakeを用いて、MultiWOZデータベース用に構築されたインタラクティブテキストインタフェースを含む、我々のパラダイムを実演する。
- 参考スコア(独自算出の注目度): 53.38517204698343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional end-to-end task-oriented dialogue systems have been built with a
modularized design. However, such design often causes misalignment between the
agent response and external knowledge, due to inadequate representation of
information. Furthermore, its evaluation metrics emphasize assessing the
agent's pre-lexicalization response, neglecting the quality of the completed
response. In this work, we propose a novel paradigm that uses a textual
interface to align external knowledge and eliminate redundant processes. We
demonstrate our paradigm in practice through MultiWOZ-Remake, including an
interactive textual interface built for the MultiWOZ database and a
correspondingly re-processed dataset. We train an end-to-end dialogue system to
evaluate this new dataset. The experimental results show that our approach
generates more natural final responses and achieves a greater task success rate
compared to the previous models.
- Abstract(参考訳): 従来のエンドツーエンドのタスク指向対話システムはモジュール化された設計で構築されてきた。
しかし,このような設計は情報表現が不十分なため,エージェント応答と外部知識のミスアライメントを引き起こすことが多い。
さらに、その評価指標は、完了した応答の品質を無視して、エージェントのプレレキシケーション応答を評価することを強調する。
本研究では,外部知識の整合と冗長なプロセスの排除にテキストインタフェースを用いた新しいパラダイムを提案する。
我々は、MultiWOZ-Remakeを用いて、MultiWOZデータベース用に構築されたインタラクティブテキストインタフェースと、それに対応する再処理データセットを含む、我々のパラダイムを実際に示す。
我々は、この新たなデータセットを評価するために、エンドツーエンドの対話システムを訓練する。
実験の結果,本手法はより自然な最終応答を生成し,従来のモデルよりも高いタスク成功率を達成した。
関連論文リスト
- Enhancing Multimodal Query Representation via Visual Dialogues for End-to-End Knowledge Retrieval [26.585985828583304]
本稿では,マルチモーダルクエリを理解可能なテキスト検索機能を実現するために,エンドツーエンドのマルチモーダル検索システムRet-XKnowを提案する。
マルチモーダルインタラクションを効果的に学習するために、視覚対話データセットから構築したVisual Dialogue-to-Retrievalデータセットも導入する。
提案手法は,ゼロショット設定における検索性能を大幅に向上するだけでなく,微調整シナリオの大幅な改善も達成できることを示す。
論文 参考訳(メタデータ) (2024-11-13T04:32:58Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - AARGH! End-to-end Retrieval-Generation for Task-Oriented Dialog [3.42658286826597]
AARGHは、単一モデルにおける検索と生成のアプローチを組み合わせたエンドツーエンドのタスク指向対話システムである。
提案手法は,状態追跡とコンテキスト・ツー・レスポンス生成性能を維持・改善しながら,より多様な出力を生成する。
論文 参考訳(メタデータ) (2022-09-08T08:15:22Z) - Interactive Evaluation of Dialog Track at DSTC9 [8.2208199207543]
第9回ダイアログ・システム・テクノロジー・チャレンジで対話的ダイアログ・トラックの評価が導入された。
本稿では,方法論と結果を含むトラックの概要について述べる。
論文 参考訳(メタデータ) (2022-07-28T22:54:04Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
我々は、ウィキペディアのテキストとテーブルの両方を基盤とした、クラウドソーシングされた自然な会話からなる新しい対話データセットHybriDialogueを提示する。
これらの会話は、複雑なマルチホップ質問をシンプルで現実的なマルチターン対話に分解することで生成される。
論文 参考訳(メタデータ) (2022-04-28T00:52:16Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
比較学習とマルチタスク学習を導入し、問題を共同でモデル化する。
提案手法は,複数の公開データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-22T10:13:27Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。