Identity Curvature Laplace Approximation for Improved Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2312.10464v2
- Date: Tue, 05 Nov 2024 10:32:02 GMT
- Title: Identity Curvature Laplace Approximation for Improved Out-of-Distribution Detection
- Authors: Maksim Zhdanov, Stanislav Dereka, Sergey Kolesnikov,
- Abstract summary: Uncertainty estimation is crucial in safety-critical applications, where robust out-of-distribution detection is essential.
Traditional Bayesian methods, though effective, are often hindered by high computational demands.
We introduce the Identity Curvature Laplace Approximation (ICLA), a novel method that challenges the conventional posterior coimation formulation.
- Score: 4.779196219827508
- License:
- Abstract: Uncertainty estimation is crucial in safety-critical applications, where robust out-of-distribution (OOD) detection is essential. Traditional Bayesian methods, though effective, are often hindered by high computational demands. As an alternative, Laplace approximation offers a more practical and efficient approach to uncertainty estimation. In this paper, we introduce the Identity Curvature Laplace Approximation (ICLA), a novel method that challenges the conventional posterior covariance formulation by using identity curvature and optimizing prior precision. This innovative design significantly enhances OOD detection performance on well-known datasets such as CIFAR-10, CIFAR-100, and ImageNet, while maintaining calibration scores. We attribute this improvement to the alignment issues between typical feature embeddings and curvature as measured by the Fisher information matrix. Our findings are further supported by demonstrating that incorporating Fisher penalty or sharpness-aware minimization techniques can greatly enhance the uncertainty estimation capabilities of standard Laplace approximation.
Related papers
- Uncertainty Estimation for Safety-critical Scene Segmentation via
Fine-grained Reward Maximization [12.79542334840646]
Uncertainty estimation plays an important role for future reliable deployment of deep segmentation models in safety-critical scenarios.
We propose a novel fine-grained reward (FGRM) framework to address uncertainty estimation.
Our method outperforms state-of-the-art methods by a clear margin on all the calibration metrics of uncertainty estimation.
arXiv Detail & Related papers (2023-11-05T17:43:37Z) - dugMatting: Decomposed-Uncertainty-Guided Matting [83.71273621169404]
We propose a decomposed-uncertainty-guided matting algorithm, which explores the explicitly decomposed uncertainties to efficiently and effectively improve the results.
The proposed matting framework relieves the requirement for users to determine the interaction areas by using simple and efficient labeling.
arXiv Detail & Related papers (2023-06-02T11:19:50Z) - Optimal Learning via Moderate Deviations Theory [4.6930976245638245]
We develop a systematic construction of highly accurate confidence intervals by using a moderate deviation principle-based approach.
It is shown that the proposed confidence intervals are statistically optimal in the sense that they satisfy criteria regarding exponential accuracy, minimality, consistency, mischaracterization probability, and eventual uniformly most accurate (UMA) property.
arXiv Detail & Related papers (2023-05-23T19:57:57Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Uncertainty Estimation based on Geometric Separation [13.588210692213568]
In machine learning, accurately predicting the probability that a specific input is correct is crucial for risk management.
We put forward a novel geometric-based approach for improving uncertainty estimations in machine learning models.
arXiv Detail & Related papers (2023-01-11T13:19:24Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
Detectors [8.029049649310213]
We introduce novel gradient-based uncertainty metrics and investigate them for different object detection architectures.
Experiments show significant improvements in true positive / false positive discrimination and prediction of intersection over union.
We also find improvement over Monte-Carlo dropout uncertainty metrics and further significant boosts by aggregating different sources of uncertainty metrics.
arXiv Detail & Related papers (2021-07-09T16:04:11Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.