Entropy-regularized Gradient Estimators for Approximate Bayesian Inference
- URL: http://arxiv.org/abs/2503.11964v2
- Date: Tue, 18 Mar 2025 01:47:01 GMT
- Title: Entropy-regularized Gradient Estimators for Approximate Bayesian Inference
- Authors: Jasmeet Kaur,
- Abstract summary: This paper addresses the estimation of the Bayesian posterior to generate diverse samples by approximating the gradient flow of the Kullback-Leibler divergence.<n>It presents empirical evaluations on classification tasks to assess the method's performance and discuss its effectiveness for Model-Based Reinforcement Learning.
- Score: 2.44755919161855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective uncertainty quantification is important for training modern predictive models with limited data, enhancing both accuracy and robustness. While Bayesian methods are effective for this purpose, they can be challenging to scale. When employing approximate Bayesian inference, ensuring the quality of samples from the posterior distribution in a computationally efficient manner is essential. This paper addresses the estimation of the Bayesian posterior to generate diverse samples by approximating the gradient flow of the Kullback-Leibler (KL) divergence and the cross entropy of the target approximation under the metric induced by the Stein Operator. It presents empirical evaluations on classification tasks to assess the method's performance and discuss its effectiveness for Model-Based Reinforcement Learning that uses uncertainty-aware network dynamics models.
Related papers
- Efficient Membership Inference Attacks by Bayesian Neural Network [12.404604217229101]
Membership Inference Attacks (MIAs) aim to estimate whether a specific data point was used in the training of a given model.<n>We propose a novel approach - Bayesian Membership Inference Attack (BMIA), which performs conditional attack through Bayesian inference.
arXiv Detail & Related papers (2025-03-10T15:58:43Z) - A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
We propose a scalable variational Bayes method for statistical inference in sparse linear regression.
Our approach relies on assigning a mean-field approximation to the nuisance coordinates.
This requires only a preprocessing step and preserves the computational advantages of mean-field variational Bayes.
arXiv Detail & Related papers (2024-06-18T14:27:44Z) - Bayesian Deep Learning for Remaining Useful Life Estimation via Stein
Variational Gradient Descent [14.784809634505903]
We show that Bayesian deep learning models trained via Stein variational gradient descent consistently outperform with respect to convergence speed and predictive performance.
We propose a method to enhance performance based on the uncertainty information provided by the Bayesian models.
arXiv Detail & Related papers (2024-02-02T02:21:06Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
Uncertainty quantification is a central challenge in reliable and trustworthy machine learning.
We show a trade-off between classification accuracy and calibration, unveiling a double descent like behavior in the calibration curve of optimally regularized estimators.
This is in contrast with the empirical Bayes method, which we show to be well calibrated in our setting despite the higher generalization error and overparametrization.
arXiv Detail & Related papers (2022-10-23T16:01:08Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - Calibration and Uncertainty Quantification of Bayesian Convolutional
Neural Networks for Geophysical Applications [0.0]
It is common to incorporate the uncertainty of predictions such subsurface models should provide calibrated probabilities and the associated uncertainties in their predictions.
It has been shown that popular Deep Learning-based models are often miscalibrated, and due to their deterministic nature, provide no means to interpret the uncertainty of their predictions.
We compare three different approaches obtaining probabilistic models based on convolutional neural networks in a Bayesian formalism.
arXiv Detail & Related papers (2021-05-25T17:54:23Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.