Adversarial Attack for Uncertainty Estimation: Identifying Critical
Regions in Neural Networks
- URL: http://arxiv.org/abs/2107.07618v1
- Date: Thu, 15 Jul 2021 21:30:26 GMT
- Title: Adversarial Attack for Uncertainty Estimation: Identifying Critical
Regions in Neural Networks
- Authors: Ismail Alarab, Simant Prakoonwit
- Abstract summary: We propose a novel method to capture data points near decision boundary in neural network that are often referred to a specific type of uncertainty.
Uncertainty estimates are derived from the input perturbations, unlike previous studies that provide perturbations on the model's parameters.
We show that the proposed method has revealed a significant outperformance over other methods and provided less risk to capture model uncertainty in machine learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel method to capture data points near decision boundary in
neural network that are often referred to a specific type of uncertainty. In
our approach, we sought to perform uncertainty estimation based on the idea of
adversarial attack method. In this paper, uncertainty estimates are derived
from the input perturbations, unlike previous studies that provide
perturbations on the model's parameters as in Bayesian approach. We are able to
produce uncertainty with couple of perturbations on the inputs. Interestingly,
we apply the proposed method to datasets derived from blockchain. We compare
the performance of model uncertainty with the most recent uncertainty methods.
We show that the proposed method has revealed a significant outperformance over
other methods and provided less risk to capture model uncertainty in machine
learning.
Related papers
- One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Identifying Drivers of Predictive Aleatoric Uncertainty [2.5311562666866494]
We present a simple approach to explain predictive aleatoric uncertainties.
We estimate uncertainty as predictive variance by adapting a neural network with a Gaussian output distribution.
We quantify our findings with a nuanced benchmark analysis that includes real-world datasets.
arXiv Detail & Related papers (2023-12-12T13:28:53Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
Supervised masking approaches in the time-frequency domain aim to employ deep neural networks to estimate a multiplicative mask to extract clean speech.
This leads to a single estimate for each input without any guarantees or measures of reliability.
We study the benefits of modeling uncertainty in clean speech estimation.
arXiv Detail & Related papers (2023-05-15T15:55:12Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - On Attacking Out-Domain Uncertainty Estimation in Deep Neural Networks [11.929914721626849]
We show that state-of-the-art uncertainty estimation algorithms could fail catastrophically under our proposed adversarial attack.
In particular, we aim at attacking the out-domain uncertainty estimation.
arXiv Detail & Related papers (2022-10-03T23:33:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Accounting for Model Uncertainty in Algorithmic Discrimination [16.654676310264705]
We argue that the fairness approaches should instead focus only on equalizing errors arising due to model uncertainty.
We draw a connection between predictive multiplicity and model uncertainty and argue that the techniques from predictive multiplicity could be used to identify errors made due to model uncertainty.
arXiv Detail & Related papers (2021-05-10T10:34:12Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.