How disentangled are your classification uncertainties?
- URL: http://arxiv.org/abs/2408.12175v1
- Date: Thu, 22 Aug 2024 07:42:43 GMT
- Title: How disentangled are your classification uncertainties?
- Authors: Ivo Pascal de Jong, Andreea Ioana Sburlea, Matias Valdenegro-Toro,
- Abstract summary: Uncertainty Quantification in Machine Learning has progressed to predicting the source of uncertainty in a prediction.
This work proposes a set of experiments to evaluate disentanglement of aleatoric and epistemic uncertainty.
- Score: 6.144680854063938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty Quantification in Machine Learning has progressed to predicting the source of uncertainty in a prediction: Uncertainty from stochasticity in the data (aleatoric), or uncertainty from limitations of the model (epistemic). Generally, each uncertainty is evaluated in isolation, but this obscures the fact that they are often not truly disentangled. This work proposes a set of experiments to evaluate disentanglement of aleatoric and epistemic uncertainty, and uses these methods to compare two competing formulations for disentanglement (the Information Theoretic approach, and the Gaussian Logits approach). The results suggest that the Information Theoretic approach gives better disentanglement, but that either predicted source of uncertainty is still largely contaminated by the other for both methods. We conclude that with the current methods for disentangling, aleatoric and epistemic uncertainty are not reliably separated, and we provide a clear set of experimental criteria that good uncertainty disentanglement should follow.
Related papers
- Uncertainty Quantification in Stereo Matching [61.73532883992135]
We propose a new framework for stereo matching and its uncertainty quantification.
We adopt Bayes risk as a measure of uncertainty and estimate data and model uncertainty separately.
We apply our uncertainty method to improve prediction accuracy by selecting data points with small uncertainties.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - From Risk to Uncertainty: Generating Predictive Uncertainty Measures via Bayesian Estimation [5.355925496689674]
We build a framework that allows one to generate different predictive uncertainty measures.
We validate our method on image datasets by evaluating its performance in detecting out-of-distribution and misclassified instances.
arXiv Detail & Related papers (2024-02-16T14:40:22Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
Uncertainty is an essential consideration for time series forecasting tasks.
In this work, we focus on quantifying the uncertainty of traffic forecasting.
We develop Deep S-Temporal Uncertainty Quantification (STUQ), which can estimate both aleatoric and relational uncertainty.
arXiv Detail & Related papers (2022-08-11T15:21:53Z) - A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement [7.6146285961466]
In this paper, we generalize methods to produce disentangled uncertainties to work with different uncertainty quantification methods.
We show that there is an interaction between learning aleatoric and epistemic uncertainty, which is unexpected and violates assumptions on aleatoric uncertainty.
We expect that our formulation and results help practitioners and researchers choose uncertainty methods and expand the use of disentangled uncertainties.
arXiv Detail & Related papers (2022-04-20T08:41:37Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.