論文の概要: How to Efficiently Annotate Images for Best-Performing Deep Learning
Based Segmentation Models: An Empirical Study with Weak and Noisy Annotations
and Segment Anything Model
- arxiv url: http://arxiv.org/abs/2312.10600v2
- Date: Wed, 20 Dec 2023 22:53:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 17:50:21.931094
- Title: How to Efficiently Annotate Images for Best-Performing Deep Learning
Based Segmentation Models: An Empirical Study with Weak and Noisy Annotations
and Segment Anything Model
- Title(参考訳): 深層学習に基づくセグメンテーションモデルにおける画像の効率的なアノテート方法--弱くうるさいアノテーションとセグメンテーションオールモデルを用いた実験的検討
- Authors: Yixin Zhang, Shen Zhao, Hanxue Gu, Maciej A. Mazurowski
- Abstract要約: ディープニューラルネットワーク(DNN)は多くのイメージセグメンテーションタスクにデプロイされ、優れたパフォーマンスを実現している。
セグメンテーションをトレーニングするためのデータセットを作成するのは面倒で費用がかかる。
この問題を緩和するためには、バウンディングボックスやスクリブルのような弱いラベルのみを提供するか、オブジェクトのより正確な(ノイズの多い)アノテーションを提供することができる。
- 参考スコア(独自算出の注目度): 18.293057751504122
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep neural networks (DNNs) have been deployed for many image segmentation
tasks and achieved outstanding performance. However, preparing a dataset for
training segmentation DNNs is laborious and costly since typically pixel-level
annotations are provided for each object of interest. To alleviate this issue,
one can provide only weak labels such as bounding boxes or scribbles, or less
accurate (noisy) annotations of the objects. These are significantly faster to
generate and thus result in more annotated images given the same time budget.
However, the reduction in quality might negatively affect the segmentation
performance of the resulting model. In this study, we perform a thorough
cost-effectiveness evaluation of several weak and noisy labels. We considered
11 variants of annotation strategies and 4 datasets. We conclude that the
common practice of accurately outlining the objects of interest is virtually
never the optimal approach when the annotation time is limited, even if notable
annotation time is available (10s of hours). Annotation approaches that stood
out in such scenarios were (1) contour-based annotation with rough continuous
traces, (2) polygon-based annotation with few vertices, and (3) box annotations
combined with the Segment Anything Model (SAM). In situations where unlimited
annotation time was available, precise annotations still lead to the highest
segmentation model performance.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は多くのイメージセグメンテーションタスクにデプロイされ、優れたパフォーマンスを実現している。
しかし、DNNのセグメンテーションをトレーニングするためのデータセットの作成は、通常、興味のあるオブジェクトごとにピクセルレベルのアノテーションが提供されるため、面倒でコストがかかる。
この問題を軽減するために、バウンディングボックスやスクリブルのような弱いラベルしか提供できないし、オブジェクトの正確な(ノイズの多い)アノテーションも提供できない。
これらは生成が大幅に速くなり、結果として同じ時間予算でより注釈付きの画像が得られる。
しかし、品質の低下は結果モデルのセグメンテーション性能に悪影響を及ぼす可能性がある。
本研究では,弱音ラベルと雑音ラベルの費用対効果を徹底的に評価する。
11種類のアノテーション戦略と4つのデータセットを検討した。
注記時間が限られている場合(注記時間10秒)に、興味のある対象を正確にアウトラインする一般的な方法は、事実上最適なアプローチではないと結論付けている。
このようなシナリオで際立ったアノテーションアプローチは、(1)粗い連続トレースを持つ輪郭ベースのアノテーション、(2)頂点がほとんどないポリゴンベースのアノテーション、(3)セグメントオールモデル(sam)と組み合わせたボックスアノテーションである。
無制限のアノテーション時間が利用できる状況では、正確なアノテーションは最も高いセグメンテーションモデルのパフォーマンスをもたらす。
関連論文リスト
- On-the-Fly Point Annotation for Fast Medical Video Labeling [1.890063512530524]
医学研究において、ディープラーニングモデルは高品質な注釈付きデータに依存している。
2つのコーナーを調整する必要があるため、プロセスは本質的にフレーム単位で行われる。
そこで本研究では,ライブビデオアノテーションのオンザフライ方式を提案し,アノテーションの効率を向上させる。
論文 参考訳(メタデータ) (2024-04-22T16:59:43Z) - Learning Tracking Representations from Single Point Annotations [49.47550029470299]
本稿では,単一点アノテーションから追跡表現を弱教師付きで学習することを提案する。
具体的には,エンド・ツー・エンド・エンド・コントラスト学習に先立って,対象対象対象性を取り入れたソフトコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-15T06:50:58Z) - Deep Active Learning with Noisy Oracle in Object Detection [5.5165579223151795]
ディープオブジェクト検出のためのラベルレビューモジュールを含む複合能動学習フレームワークを提案する。
アクティブなデータセットで部分的にノイズの多いアノテーションを修正するためにアノテーションの予算の一部を利用することで、モデルの性能が早期に向上することを示します。
本実験では,同一のアノテーション予算でラベルレビューを組み込むことで,最大4.5mAPポイントのオブジェクト検出性能の向上を実現した。
論文 参考訳(メタデータ) (2023-09-30T13:28:35Z) - Urban Scene Semantic Segmentation with Low-Cost Coarse Annotation [107.72926721837726]
粗いアノテーションは、セマンティックセグメンテーションモデルをトレーニングするための、低コストで非常に効果的な代替手段である。
粗い注釈付きデータの未ラベル領域の擬似ラベルを生成する粗大な自己学習フレームワークを提案する。
提案手法は,アノテーションの予算のごく一部で完全に注釈付けされたデータに匹敵する性能が得られるため,大幅な性能向上とアノテーションのコストトレードオフを実現する。
論文 参考訳(メタデータ) (2022-12-15T15:43:42Z) - Rethinking Generalization: The Impact of Annotation Style on Medical
Image Segmentation [9.056814157662965]
アノテーションのバイアスを無視するのではなく、アノテーションのバイアスをモデル化することで、データセット間のアノテーションスタイルの違いを考慮できる有望な方法が示される。
次に、特定の画像特徴と相関するモデルアノテーションスタイルに対する画像条件付け手法を提案する。
論文 参考訳(メタデータ) (2022-10-31T15:28:49Z) - A Positive/Unlabeled Approach for the Segmentation of Medical Sequences
using Point-Wise Supervision [3.883460584034766]
本稿では,ポイントワイズアノテーションのみを用いて,医用画像のボリュームや動画を効率的に分割する手法を提案する。
提案手法は,ポイントワイドアノテーションを用いて,適切なポジティブ/アンラベル対象関数を用いてディープラーニングモデルを訓練する。
提案手法は,同じ問題に適応した最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-18T09:13:33Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
多数の画像の分類ラベルを収集するための効率的なアノテーション戦略を検討する。
人間のラベリング作業を最小化するための修正とベストプラクティスを提案します。
ImageNet100の125kイメージサブセットのシミュレーション実験では、平均で0.35のアノテーションで80%のトップ-1の精度でアノテートできることが示されている。
論文 参考訳(メタデータ) (2021-04-26T16:29:32Z) - Temporal Calibrated Regularization for Robust Noisy Label Learning [60.90967240168525]
ディープニューラルネットワーク(DNN)は、大規模な注釈付きデータセットの助けを借りて、多くのタスクで大きな成功を収めている。
しかし、大規模なデータのラベル付けは非常にコストがかかりエラーが発生しやすいため、アノテーションの品質を保証することは困難である。
本稿では,従来のラベルと予測を併用したTCR(Temporal Calibrated Regularization)を提案する。
論文 参考訳(メタデータ) (2020-07-01T04:48:49Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
本稿では,少数の位置レベルのアノテーション(十分に教師された)と大量のカウントレベルのアノテーション(弱教師付き)からモデルを学習する,弱教師付き群集カウントの問題について検討する。
我々は、生成した密度マップの自由を制限するための正規化を構築するために、単純なyet効果のトレーニング戦略、すなわちMultiple Auxiliary Tasks Training (MATT)を考案した。
論文 参考訳(メタデータ) (2020-02-29T02:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。