論文の概要: Analisis Eksploratif Dan Augmentasi Data NSL-KDD Menggunakan Deep
Generative Adversarial Networks Untuk Meningkatkan Performa Algoritma Extreme
Gradient Boosting Dalam Klasifikasi Jenis Serangan Siber
- arxiv url: http://arxiv.org/abs/2312.10669v1
- Date: Sun, 17 Dec 2023 09:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 15:08:02.685906
- Title: Analisis Eksploratif Dan Augmentasi Data NSL-KDD Menggunakan Deep
Generative Adversarial Networks Untuk Meningkatkan Performa Algoritma Extreme
Gradient Boosting Dalam Klasifikasi Jenis Serangan Siber
- Title(参考訳): Analisis Eksploratif Dan Augmentasi Data NSL-KDD Menggunakan Deep Generative Adversarial Networks Untuk Meningkatkan Performa Algoritma Extreme Gradient Boosting Dalam Klasifikasi Jenis Serangan Siber
- Authors: K. P. Santoso, F. A. Madany, H. Suryotrisongko
- Abstract要約: 第一の目的は、NSL-KDDデータセット上のサイバー攻撃の分類におけるeXtreme Gradient Boosting(XGBoost)の有効性を高めることである。
その結果, GANによるデータ拡張を伴わないXGBoostモデルで99.53%, GANを用いたデータ拡張で99.78%の精度が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes the implementation of Deep Generative Adversarial
Networks (GANs) for augmenting the NSL-KDD dataset. The primary objective is to
enhance the efficacy of eXtreme Gradient Boosting (XGBoost) in the
classification of cyber-attacks on the NSL-KDD dataset. As a result, the method
proposed in this research achieved an accuracy of 99.53% using the XGBoost
model without data augmentation with GAN, and 99.78% with data augmentation
using GAN.
- Abstract(参考訳): 本研究では,NSL-KDDデータセットを拡張するためのGAN(Deep Generative Adversarial Networks)の実装を提案する。
主な目的は、nsl-kddデータセット上のサイバー攻撃の分類におけるxgboost(extreme gradient boosting)の有効性を高めることである。
その結果, GANによるデータ拡張を伴わないXGBoostモデルで99.53%, GANを用いたデータ拡張で99.78%の精度が得られた。
関連論文リスト
- Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study [59.780800481241066]
Generative Artificial Intelligence (GenAI) は、無線データ拡張の効果的な代替手段である。
本稿では、無線ネットワークにおけるGenAI駆動型データ拡張の可能性と有効性について考察する。
本稿では,Wi-Fiジェスチャー認識のための一般化拡散モデルに基づくデータ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-13T05:15:25Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - Generative adversarial networks for data-scarce spectral applications [0.0]
合成スペクトルデータ生成分野におけるGANの応用について報告する。
CWGANは,低データ方式の性能向上を図り,サロゲートモデルとして機能することを示す。
論文 参考訳(メタデータ) (2023-07-14T16:27:24Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
ディープラーニング法はスペクトル画像(SI)計算タスクの最先端技術である。
GANは、データ分散から学習およびサンプリングすることで、多様な拡張を可能にする。
この種のデータの高次元性は、GANトレーニングの収束を妨げるため、GANベースのSI生成は困難である。
本稿では, オートエンコーダ訓練における低次元表現分散を制御し, GANで生成されたサンプルの多様性を高めるための統計正則化を提案する。
論文 参考訳(メタデータ) (2023-04-29T00:25:02Z) - On the Importance of Hyperparameters and Data Augmentation for
Self-Supervised Learning [32.53142486214591]
自己監視学習(SSL)はディープラーニング研究の非常に活発な領域となり、分類やその他のタスクの事前学習方法として広く利用されている。
ここでは、実際、ハイパーパラメータとデータ拡張戦略の選択は、パフォーマンスに劇的な影響を与える可能性があることを示す。
我々は,グループ間のサンプリングを最適化するグループ拡張アルゴリズム,GroupAugmentを導入する。
論文 参考訳(メタデータ) (2022-07-16T08:31:11Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
識別器が過度に適合する傾向があるため、限られたデータでGANを訓練することは困難である。
本稿では,拡張データの拡張パラメータを予測する,拡張型自己教師型識別器を提案する。
本稿では,クラス条件の BigGAN と非条件の StyleGAN2 アーキテクチャを用いた State-of-the-art (SOTA) 手法と比較する。
論文 参考訳(メタデータ) (2022-05-31T10:35:55Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - GAN-based Data Augmentation for Chest X-ray Classification [0.0]
Generative Adrialversa Networks (GANs) は、合成データ拡張の新しい方法を提供する。
GANベースの拡張により、表現不足のクラスでは、よりダウンストリームのパフォーマンスが向上する。
これは、データ収集が違法に高価である場合にネットワーク性能を向上させるため、GANベースの拡張が有望な研究領域であることを示唆している。
論文 参考訳(メタデータ) (2021-07-07T01:36:48Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - On Data Augmentation for GAN Training [39.074761323958406]
本稿では,GANトレーニングにおける拡張データの利用を可能にするために,DAG(Data Augmentation Optimized for GAN)を提案する。
我々は異なるGANモデルにDAGを適用する実験を行う。
いくつかのGANモデルでDAGを使用する場合、システムは最先端のFrechet Inception Distance(FID)スコアを確立する。
論文 参考訳(メタデータ) (2020-06-09T15:19:26Z) - Data Augmentation using Generative Adversarial Networks (GANs) for
GAN-based Detection of Pneumonia and COVID-19 in Chest X-ray Images [0.0]
肺炎およびCOVID-19の半監督的検出のための胸部X線増強のための新しいGANアーキテクチャを提案する。
提案したGANは, 肺炎, COVID-19の胸部X線検査において, データを効果的に増強し, 疾患の分類精度を向上させるのに有用である。
論文 参考訳(メタデータ) (2020-06-05T18:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。