Harnessing small projectors and multiple views for efficient vision pretraining
- URL: http://arxiv.org/abs/2312.10725v2
- Date: Fri, 17 Jan 2025 07:01:43 GMT
- Title: Harnessing small projectors and multiple views for efficient vision pretraining
- Authors: Kumar Krishna Agrawal, Arna Ghosh, Shagun Sodhani, Adam Oberman, Blake Richards,
- Abstract summary: We build on recent analytical results to design practical recommendations for competitive and efficient visual representation learning.<n>We show how this idealized loss can be reformulated to a functionally equivalent loss that is more efficient to compute.<n>We empirically verify our findings on CIFAR, STL and Imagenet datasets.
- Score: 11.325655646957186
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent progress in self-supervised (SSL) visual representation learning has led to the development of several different proposed frameworks that rely on augmentations of images but use different loss functions. However, there are few theoretically grounded principles to guide practice, so practical implementation of each SSL framework requires several heuristics to achieve competitive performance. In this work, we build on recent analytical results to design practical recommendations for competitive and efficient SSL that are grounded in theory. Specifically, recent theory tells us that existing SSL frameworks are minimizing the same idealized loss, which is to learn features that best match the data similarity kernel defined by the augmentations used. We show how this idealized loss can be reformulated to a functionally equivalent loss that is more efficient to compute. We study the implicit bias of using gradient descent to minimize our reformulated loss function and find that using a stronger orthogonalization constraint with a reduced projector dimensionality should yield good representations. Furthermore, the theory tells us that approximating the reformulated loss should be improved by increasing the number of augmentations, and as such using multiple augmentations should lead to improved convergence. We empirically verify our findings on CIFAR, STL and Imagenet datasets, wherein we demonstrate an improved linear readout performance when training a ResNet-backbone using our theoretically grounded recommendations. Remarkably, we also demonstrate that by leveraging these insights, we can reduce the pretraining dataset size by up to 2$\times$ while maintaining downstream accuracy simply by using more data augmentations. Taken together, our work provides theoretically grounded recommendations that can be used to improve SSL convergence and efficiency.
Related papers
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.
We introduce novel algorithms for dynamic, instance-level data reweighting.
Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - TwinCL: A Twin Graph Contrastive Learning Model for Collaborative Filtering [20.26347686022996]
We introduce a twin encoder in place of random augmentations, demonstrating the redundancy of traditional augmentation techniques.
Our proposed Twin Graph Contrastive Learning model -- TwinCL -- aligns positive pairs of user and item embeddings and the representations from the twin encoder.
Our theoretical analysis and experimental results show that the proposed model contributes to better recommendation accuracy and training efficiency performance.
arXiv Detail & Related papers (2024-09-27T22:31:08Z) - On Improving the Algorithm-, Model-, and Data- Efficiency of Self-Supervised Learning [18.318758111829386]
We propose an efficient single-branch SSL method based on non-parametric instance discrimination.
We also propose a novel self-distillation loss that minimizes the KL divergence between the probability distribution and its square root version.
arXiv Detail & Related papers (2024-04-30T06:39:04Z) - Investigating the Benefits of Projection Head for Representation Learning [11.20245728716827]
An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations.
The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better?
We show that implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers.
arXiv Detail & Related papers (2024-03-18T00:48:58Z) - Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks [22.348887008547653]
This work introduces Random Linear Projections (RLP) loss, a novel approach that enhances training efficiency by leveraging geometric relationships within the data.
Our empirical evaluations, conducted across benchmark datasets and synthetic examples, demonstrate that neural networks trained with RLP loss outperform those trained with traditional loss functions.
arXiv Detail & Related papers (2023-11-21T05:22:39Z) - Gradient constrained sharpness-aware prompt learning for vision-language
models [99.74832984957025]
This paper targets a novel trade-off problem in generalizable prompt learning for vision-language models (VLM)
By analyzing the loss landscapes of the state-of-the-art method and vanilla Sharpness-aware Minimization (SAM) based method, we conclude that the trade-off performance correlates to both loss value and loss sharpness.
We propose a novel SAM-based method for prompt learning, denoted as Gradient Constrained Sharpness-aware Context Optimization (GCSCoOp)
arXiv Detail & Related papers (2023-09-14T17:13:54Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Weighted Ensemble Self-Supervised Learning [67.24482854208783]
Ensembling has proven to be a powerful technique for boosting model performance.
We develop a framework that permits data-dependent weighted cross-entropy losses.
Our method outperforms both in multiple evaluation metrics on ImageNet-1K.
arXiv Detail & Related papers (2022-11-18T02:00:17Z) - Pretraining the Vision Transformer using self-supervised methods for
vision based Deep Reinforcement Learning [0.0]
We study pretraining a Vision Transformer using several state-of-the-art self-supervised methods and assess the quality of the learned representations.
Our results show that all methods are effective in learning useful representations and avoiding representational collapse.
The encoder pretrained with the temporal order verification task shows the best results across all experiments.
arXiv Detail & Related papers (2022-09-22T10:18:59Z) - Light-weight probing of unsupervised representations for Reinforcement Learning [20.638410483549706]
We study whether linear probing can be a proxy evaluation task for the quality of unsupervised RL representation.
We show that the probing tasks are strongly rank correlated with the downstream RL performance on the Atari100k Benchmark.
This provides a more efficient method for exploring the space of pretraining algorithms and identifying promising pretraining recipes.
arXiv Detail & Related papers (2022-08-25T21:08:01Z) - SiRi: A Simple Selective Retraining Mechanism for Transformer-based
Visual Grounding [131.0977050185209]
Selective Retraining (SiRi) can significantly outperform previous approaches on three popular benchmarks.
SiRi performs surprisingly superior even with limited training data.
We also extend it to transformer-based visual grounding models and other vision-language tasks to verify the validity.
arXiv Detail & Related papers (2022-07-27T07:01:01Z) - Does Self-supervised Learning Really Improve Reinforcement Learning from
Pixels? [42.404871049605084]
We extend the contrastive reinforcement learning framework (e.g., CURL) that jointly optimize SSL and RL losses.
Our observations suggest that the existing SSL framework for RL fails to bring meaningful improvement over the baselines.
We evaluate the approach in multiple different environments including a real-world robot environment.
arXiv Detail & Related papers (2022-06-10T17:59:30Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
We develop a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF) for reinforcement learning.
CCLF fully exploit sample importance and improve learning efficiency in a self-supervised manner.
We evaluate this approach on the DeepMind Control Suite, Atari, and MiniGrid benchmarks.
arXiv Detail & Related papers (2022-05-02T14:42:05Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Visual Alignment Constraint for Continuous Sign Language Recognition [74.26707067455837]
Vision-based Continuous Sign Language Recognition aims to recognize unsegmented gestures from image sequences.
In this work, we revisit the overfitting problem in recent CTC-based CSLR works and attribute it to the insufficient training of the feature extractor.
We propose a Visual Alignment Constraint (VAC) to enhance the feature extractor with more alignment supervision.
arXiv Detail & Related papers (2021-04-06T07:24:58Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - A Simple Framework for Contrastive Learning of Visual Representations [116.37752766922407]
This paper presents SimCLR: a simple framework for contrastive learning of visual representations.
We show that composition of data augmentations plays a critical role in defining effective predictive tasks.
We are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet.
arXiv Detail & Related papers (2020-02-13T18:50:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.