Deep Learning-based MRI Reconstruction with Artificial Fourier Transform
(AFT)-Net
- URL: http://arxiv.org/abs/2312.10892v1
- Date: Mon, 18 Dec 2023 02:50:45 GMT
- Title: Deep Learning-based MRI Reconstruction with Artificial Fourier Transform
(AFT)-Net
- Authors: Yanting Yang, Jeffery Siyuan Tian, Matthieu Dagommer, Jia Guo
- Abstract summary: We introduce a unified complex-valued deep learning framework - artificial Fourier transform network (AFT-Net)
The AFT-Net can be readily used to solve the image inverse problems in domain-transform.
We show that AFT-Net achieves superior accelerated MRI reconstruction and is comparable to existing approaches.
- Score: 13.98425325460439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deep complex-valued neural network provides a powerful way to leverage
complex number operations and representations, which has succeeded in several
phase-based applications. However, most previously published networks have not
fully accessed the impact of complex-valued networks in the frequency domain.
Here, we introduced a unified complex-valued deep learning framework -
artificial Fourier transform network (AFT-Net) - which combined domain-manifold
learning and complex-valued neural networks. The AFT-Net can be readily used to
solve the image inverse problems in domain-transform, especially for
accelerated magnetic resonance imaging (MRI) reconstruction and other
applications. While conventional methods only accept magnitude images, the
proposed method takes raw k-space data in the frequency domain as inputs,
allowing a mapping between the k-space domain and the image domain to be
determined through cross-domain learning. We show that AFT-Net achieves
superior accelerated MRI reconstruction and is comparable to existing
approaches. Also, our approach can be applied to different tasks like denoised
MRS reconstruction and different datasets with various contrasts. The AFT-Net
presented here is a valuable preprocessing component for different preclinical
studies and provides an innovative alternative for solving inverse problems in
imaging and spectroscopy.
Related papers
- Untrained neural network embedded Fourier phase retrieval from few
measurements [8.914156789222266]
This paper proposes an untrained neural network embedded algorithm to solve FPR with few measurements.
We use a generative network to represent the image to be recovered, which confines the image to the space defined by the network structure.
To reduce the computational cost mainly caused by the parameter updates of the untrained NN, we develop an accelerated algorithm that adaptively trades off between explicit and implicit regularization.
arXiv Detail & Related papers (2023-07-16T16:23:50Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
We present a novel Deep Learning-based Inverse Problem solver applied to the task of accelerated MRI reconstruction.
The RecurrentVarNet consists of multiple blocks, each responsible for one unrolled iteration of the gradient descent algorithm for solving inverse problems.
Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-channel brain dataset.
arXiv Detail & Related papers (2021-11-18T11:44:04Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
We show that neural network layers that explicitly combine frequency and image feature representations can be used as a versatile building block for reconstruction from frequency space data.
The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network.
arXiv Detail & Related papers (2020-07-02T23:54:46Z) - Geometric Approaches to Increase the Expressivity of Deep Neural
Networks for MR Reconstruction [41.62169556793355]
Deep learning approaches have been extensively investigated to reconstruct images from accelerated magnetic resonance image (MRI) acquisition.
It is not clear how to choose a suitable network architecture to balance the trade-off between network complexity and performance.
This paper proposes a systematic geometric approach using bootstrapping and subnetwork aggregation to increase the expressivity of the underlying neural network.
arXiv Detail & Related papers (2020-03-17T14:18:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.