Cross-Modality High-Frequency Transformer for MR Image Super-Resolution
- URL: http://arxiv.org/abs/2203.15314v1
- Date: Tue, 29 Mar 2022 07:56:55 GMT
- Title: Cross-Modality High-Frequency Transformer for MR Image Super-Resolution
- Authors: Chaowei Fang, Dingwen Zhang, Liang Wang, Yulun Zhang, Lechao Cheng,
Junwei Han
- Abstract summary: We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
- Score: 100.50972513285598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving the resolution of magnetic resonance (MR) image data is critical to
computer-aided diagnosis and brain function analysis. Higher resolution helps
to capture more detailed content, but typically induces to lower
signal-to-noise ratio and longer scanning time. To this end, MR image
super-resolution has become a widely-interested topic in recent times. Existing
works establish extensive deep models with the conventional architectures based
on convolutional neural networks (CNN). In this work, to further advance this
research field, we make an early effort to build a Transformer-based MR image
super-resolution framework, with careful designs on exploring valuable domain
prior knowledge. Specifically, we consider two-fold domain priors including the
high-frequency structure prior and the inter-modality context prior, and
establish a novel Transformer architecture, called Cross-modality
high-frequency Transformer (Cohf-T), to introduce such priors into
super-resolving the low-resolution (LR) MR images. Comprehensive experiments on
two datasets indicate that Cohf-T achieves new state-of-the-art performance.
Related papers
- Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Learning Two-factor Representation for Magnetic Resonance Image Super-resolution [1.294284364022674]
We propose a novel method for MR image super-resolution based on two-factor representation.
Specifically, we factorize intensity signals into a linear combination of learnable basis and coefficient factors.
Our method achieves state-of-the-art performance, providing superior visual fidelity and robustness.
arXiv Detail & Related papers (2024-09-15T13:32:24Z) - Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution [10.323643152957114]
We propose an efficient diffusion model for multi-contrast MRI SR, named as DiffMSR.
Specifically, we apply DM in a highly compact low-dimensional latent space to generate prior knowledge with high-frequency detail information.
In addition, we design the Prior-Guide Large Window Transformer (PLWformer) as the decoder for DM, which can extend the receptive field while fully utilizing the prior knowledge generated by DM to ensure that the reconstructed MR image remains undistorted.
arXiv Detail & Related papers (2024-04-07T02:15:43Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - HUMUS-Net: Hybrid unrolled multi-scale network architecture for
accelerated MRI reconstruction [38.0542877099235]
HUMUS-Net is a hybrid architecture that combines the beneficial implicit bias and efficiency of convolutions with the power of Transformer blocks in an unrolled and multi-scale network.
Our network establishes new state of the art on the largest publicly available MRI dataset, the fastMRI dataset.
arXiv Detail & Related papers (2022-03-15T19:26:29Z) - Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution [9.022005574190182]
We design a network based on the transformer for fusing the low-resolution hyperspectral images and high-resolution multispectral images.
Considering the LR-HSIs hold the main spectral structure, the network focuses on the spatial detail estimation.
Various experiments and quality indexes show our approach's superiority compared with other state-of-the-art methods.
arXiv Detail & Related papers (2021-09-05T14:00:34Z) - Accelerated Multi-Modal MR Imaging with Transformers [92.18406564785329]
We propose a multi-modal transformer (MTrans) for accelerated MR imaging.
By restructuring the transformer architecture, our MTrans gains a powerful ability to capture deep multi-modal information.
Our framework provides two appealing benefits: (i) MTrans is the first attempt at using improved transformers for multi-modal MR imaging, affording more global information compared with CNN-based methods.
arXiv Detail & Related papers (2021-06-27T15:01:30Z) - SRR-Net: A Super-Resolution-Involved Reconstruction Method for High
Resolution MR Imaging [7.42807471627113]
The proposed SRR-Net is capable of recovering high-resolution brain images with both good visual quality and perceptual quality.
Experiment results using in-vivo HR multi-coil brain data indicate that the proposed SRR-Net is capable of recovering high-resolution brain images.
arXiv Detail & Related papers (2021-04-13T02:19:12Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.