Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI)
- URL: http://arxiv.org/abs/2312.10904v2
- Date: Wed, 12 Jun 2024 17:15:37 GMT
- Title: Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI)
- Authors: Sabrina Toro, Anna V Anagnostopoulos, Sue Bello, Kai Blumberg, Rhiannon Cameron, Leigh Carmody, Alexander D Diehl, Damion Dooley, William Duncan, Petra Fey, Pascale Gaudet, Nomi L Harris, Marcin Joachimiak, Leila Kiani, Tiago Lubiana, Monica C Munoz-Torres, Shawn O'Neil, David Osumi-Sutherland, Aleix Puig, Justin P Reese, Leonore Reiser, Sofia Robb, Troy Ruemping, James Seager, Eric Sid, Ray Stefancsik, Magalie Weber, Valerie Wood, Melissa A Haendel, Christopher J Mungall,
- Abstract summary: We present a Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI)
DRAGON-AI can generate textual and logical components, drawing from existing knowledge in instructions and unstructured text sources.
We also demonstrated the ability of DRAGON-AI to incorporate natural language in the form GitHub issues.
- Score: 24.433048676289363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, environmental, and food sciences, representing consensus knowledge in an accurate and computable form. However, their construction and maintenance demand substantial resources and necessitate substantial collaboration between domain experts, curators, and ontology experts. We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI), an ontology generation method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). DRAGON-AI can generate textual and logical ontology components, drawing from existing knowledge in multiple ontologies and unstructured text sources. Results: We assessed performance of DRAGON-AI on de novo term construction across ten diverse ontologies, making use of extensive manual evaluation of results. Our method has high precision for relationship generation, but has slightly lower precision than from logic-based reasoning. Our method is also able to generate definitions deemed acceptable by expert evaluators, but these scored worse than human-authored definitions. Notably, evaluators with the highest level of confidence in a domain were better able to discern flaws in AI-generated definitions. We also demonstrated the ability of DRAGON-AI to incorporate natural language instructions in the form of GitHub issues. Conclusions: These findings suggest DRAGON-AI's potential to substantially aid the manual ontology construction process. However, our results also underscore the importance of having expert curators and ontology editors drive the ontology generation process.
Related papers
- Benchmarking Generative AI Models for Deep Learning Test Input Generation [6.674615464230326]
Test Input Generators (TIGs) are crucial to assess the ability of Deep Learning (DL) image classifiers to provide correct predictions for inputs beyond their training and test sets.
Recent advancements in Generative AI (GenAI) models have made them a powerful tool for creating and manipulating synthetic images.
We benchmark and combine different GenAI models with TIGs, assessing their effectiveness, efficiency, and quality of the generated test images.
arXiv Detail & Related papers (2024-12-23T15:30:42Z) - A Self-guided Multimodal Approach to Enhancing Graph Representation Learning for Alzheimer's Diseases [45.59286036227576]
Graph neural networks (GNNs) are powerful machine learning models designed to handle irregularly structured data.
This paper presents a self-guided, knowledge-infused multimodal GNN that autonomously incorporates domain knowledge into the model development process.
Our approach conceptualizes domain knowledge as natural language and introduces a specialized multimodal GNN capable of leveraging this uncurated knowledge.
arXiv Detail & Related papers (2024-12-09T05:16:32Z) - Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
Generative AI shows significant potential in health economics and outcomes research (HEOR)
Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges.
Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration.
arXiv Detail & Related papers (2024-10-26T15:42:50Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - The Artificial Intelligence Ontology: LLM-assisted construction of AI concept hierarchies [0.7796141041639462]
The Artificial Intelligence Ontology (AIO) is a systematization of artificial intelligence (AI) concepts, methodologies, and their interrelations.
AIO aims to address the rapidly evolving landscape of AI by providing a comprehensive framework that encompasses both technical and ethical aspects of AI technologies.
arXiv Detail & Related papers (2024-04-03T20:08:15Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors.
This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI.
arXiv Detail & Related papers (2023-11-04T17:44:58Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - OAK4XAI: Model towards Out-Of-Box eXplainable Artificial Intelligence
for Digital Agriculture [4.286327408435937]
We build an Agriculture Computing Ontology (AgriComO) to explain the knowledge mined in agriculture.
XAI tries to provide human-understandable explanations for decision-making and trained AI models.
arXiv Detail & Related papers (2022-09-29T21:20:25Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.