論文の概要: A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Language Models
- arxiv url: http://arxiv.org/abs/2312.10982v1
- Date: Mon, 18 Dec 2023 07:07:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 11:57:39.081068
- Title: A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Language Models
- Title(参考訳): 大規模言語モデルにおける攻撃手法・実装・緩和戦略の包括的調査
- Authors: Aysan Esmradi, Daniel Wankit Yip, Chun Fai Chan,
- Abstract要約: この記事では、モデル自体に対する攻撃と、モデルアプリケーションに対する攻撃という2つの攻撃カテゴリについて説明する。
前者は専門知識、モデルデータへのアクセス、重要な実装時間が必要です。
後者は攻撃者にはよりアクセスしやすく、注目されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ensuring the security of large language models (LLMs) is an ongoing challenge despite their widespread popularity. Developers work to enhance LLMs security, but vulnerabilities persist, even in advanced versions like GPT-4. Attackers exploit these weaknesses, highlighting the need for proactive cybersecurity measures in AI model development. This article explores two attack categories: attacks on models themselves and attacks on model applications. The former requires expertise, access to model data, and significant implementation time, while the latter is more accessible to attackers and has seen increased attention. Our study reviews over 100 recent research works, providing an in-depth analysis of each attack type. We identify the latest attack methods and explore various approaches to carry them out. We thoroughly investigate mitigation techniques, assessing their effectiveness and limitations. Furthermore, we summarize future defenses against these attacks. We also examine real-world techniques, including reported and our implemented attacks on LLMs, to consolidate our findings. Our research highlights the urgency of addressing security concerns and aims to enhance the understanding of LLM attacks, contributing to robust defense development in this evolving domain.
- Abstract(参考訳): 大きな言語モデル(LLM)のセキュリティを確保することは、広く普及しているにもかかわらず、現在進行中の課題である。
開発者はLSMのセキュリティを強化するために作業するが、脆弱性はGPT-4のような高度なバージョンでも持続する。
攻撃者はこれらの弱点を悪用し、AIモデル開発における積極的なサイバーセキュリティ対策の必要性を強調している。
この記事では、モデル自体に対する攻撃と、モデルアプリケーションに対する攻撃という2つの攻撃カテゴリについて説明する。
前者は専門知識、モデルデータへのアクセス、重要な実装時間を必要とし、後者は攻撃者に対してよりアクセスしやすく、注目されている。
本研究は,100以上の最近の研究成果をレビューし,各攻撃タイプについて詳細な分析を行った。
我々は、最新の攻撃方法を特定し、それらを実行するための様々なアプローチを探索する。
我々は、緩和手法を徹底的に検討し、その効果と限界を評価した。
さらに、これらの攻撃に対する将来の防御について要約する。
また,LLMに対する報告や実施した攻撃を含む実世界の技術についても検討し,その結果を整理した。
本研究は、セキュリティ問題に対処する緊急性を強調し、LLM攻撃の理解を高めることを目的としており、この発展途上の領域における堅牢な防衛開発に寄与している。
関連論文リスト
- The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
本稿では,視覚大言語モデル (VLLM) がジェイルブレイク攻撃のリスクが高い理由を考察する。
既存の防御機構は、テキストバウンド・プルーデンスの問題に悩まされる。
ジェイルブレイクの2つの代表的な評価手法は、しばしばチャンス合意を示す。
論文 参考訳(メタデータ) (2024-11-13T07:57:19Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Recent advancements in LLM Red-Teaming: Techniques, Defenses, and Ethical Considerations [0.0]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な機能を示しているが、Jailbreak攻撃に対する脆弱性は重大なセキュリティリスクをもたらす。
本稿では,Large Language Model (LLM) のレッドチームにおける攻撃戦略と防御機構の最近の進歩を包括的に分析する。
論文 参考訳(メタデータ) (2024-10-09T01:35:38Z) - Recent Advances in Attack and Defense Approaches of Large Language Models [27.271665614205034]
大規模言語モデル(LLM)は、高度なテキスト処理と生成機能を通じて、人工知能と機械学習に革命をもたらした。
彼らの広範な展開は、重大な安全性と信頼性の懸念を引き起こした。
本稿は,LLMの脆弱性と脅威に関する最近の研究をレビューし,現代防衛機構の有効性を評価する。
論文 参考訳(メタデータ) (2024-09-05T06:31:37Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Exploring Vulnerabilities and Protections in Large Language Models: A Survey [1.6179784294541053]
本稿では,Large Language Models (LLMs) のセキュリティ課題について検討する。
Prompt HackingとAdversarial Attacksの2つの主要分野に焦点を当てている。
これらのセキュリティ問題の詳細を明らかにすることで、この調査はレジリエントなAIシステム構築に関する広範な議論に貢献する。
論文 参考訳(メタデータ) (2024-06-01T00:11:09Z) - Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
大規模言語モデル(LLM)は自然言語処理(NLP)分野の基盤となっている。
本稿では,LSMを標的とした様々な攻撃形態の包括的調査を行う。
モデルアウトプットを操作するための敵攻撃、モデルトレーニングに影響を与えるデータ中毒、データエクスプロイトのトレーニングに関連するプライバシー上の懸念などについて調べる。
論文 参考訳(メタデータ) (2024-03-03T04:46:21Z) - A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models [20.40158210837289]
Vicuna, LLama, GPT-3.5 Turboの3つの異なる言語モデルに適用した9つの攻撃手法と7つの防御手法について検討した。
以上の結果から,既存のホワイトボックス攻撃は普遍的手法に比べて性能が低く,入力に特別なトークンを含むと,攻撃成功の可能性に大きな影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2024-02-21T01:26:39Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
最近の研究で、人工知能のセキュリティの研究と実践のギャップが特定されている。
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。
論文 参考訳(メタデータ) (2023-11-16T16:09:44Z) - Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning [48.49658986576776]
深層強化学習(Dep Reinforcement Learning, DRL)は、周囲の環境に適応する優れた能力のおかげで、現実世界に多くの応用がある。
その大きな利点にもかかわらず、DRLは現実のクリティカルシステムやアプリケーションでの使用を妨げている敵攻撃の影響を受けやすい。
本稿では,DRLベースのシステムにおける新たな攻撃と,これらの攻撃を防御するための潜在的対策について述べる。
論文 参考訳(メタデータ) (2020-01-27T10:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。