論文の概要: Retrieval-Augmented Generation for Large Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2312.10997v2
- Date: Fri, 29 Dec 2023 18:25:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-02 21:01:58.408161
- Title: Retrieval-Augmented Generation for Large Language Models: A Survey
- Title(参考訳): 大規模言語モデルのための検索型生成:調査
- Authors: Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
Yi Dai, Jiawei Sun, Qianyu Guo, Meng Wang and Haofen Wang
- Abstract要約: 大きな言語モデル(LLM)は重要な能力を示すが、幻覚、時代遅れの知識、不透明で追跡不能な推論プロセスといった課題に直面している。
Augmented Generation (RAG) は、外部データベースからのリアルタイムデータを LLM 応答に組み込むことによって、これらの問題に対する有望な解決策として登場した。
本稿では,RAGの進化を詳細に分析し,Naive RAG,Advanced RAG,Modular RAGの3つのパラダイムに着目した。
- 参考スコア(独自算出の注目度): 19.139461618363605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) demonstrate significant capabilities but face
challenges such as hallucination, outdated knowledge, and non-transparent,
untraceable reasoning processes. Augmented Generation (RAG) has emerged as a
promising solution to these issues by incorporating real-time data from
external databases into LLM responses. This enhances the accuracy and
credibility of the models, particularly for knowledge-intensive tasks, and
allows for continuous knowledge updates and integration of domain-specific
information. RAG synergistically merges LLMs' intrinsic knowledge with the
vast, dynamic repositories of external databases. This survey paper provides an
in-depth analysis of the evolution of RAG, focusing on three key paradigms:
Naive RAG, Advanced RAG, and Modular RAG. It methodically examines the three
fundamental components of RAG systems: the retriever, the generator, and the
augmentation methods, underscoring the cutting-edge technologies within each
componenet. Additionally, the paper introduces novel metrics and capabilities
for evaluating RAG models, as well as the most recent evaluation framework.
Finally, the paper outlines future research directions from three perspectives:
future challenges,modality extension,and the development of the RAG technical
stack and ecosystem
- Abstract(参考訳): 大きな言語モデル(LLM)は重要な能力を示すが、幻覚、時代遅れの知識、不透明で追跡不能な推論プロセスといった課題に直面している。
Augmented Generation (RAG) は、外部データベースからのリアルタイムデータを LLM 応答に組み込むことによって、これらの問題に対する有望な解決策として登場した。
これによってモデル、特に知識集約型タスクの正確性と信頼性が向上し、継続的な知識更新とドメイン固有情報の統合が可能になる。
RAG は LLM の本質的な知識と外部データベースの巨大な動的リポジトリを相乗的に統合する。
本稿では,RAGの進化を詳細に分析し,Naive RAG,Advanced RAG,Modular RAGの3つのパラダイムに着目した。
RAGシステムの3つの基本コンポーネント(レトリバー、ジェネレータ、拡張方法)を方法論的に検討し、各コンポネネット内の最先端技術について検討する。
さらに、RAGモデルを評価するための新しいメトリクスと機能や、最新の評価フレームワークについても紹介する。
最後に,今後の課題,モダリティの拡張,RAG技術スタックとエコシステムの開発という3つの視点から,今後の研究方向性を概説する。
関連論文リスト
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - Contextual Compression in Retrieval-Augmented Generation for Large Language Models: A Survey [0.0]
大きな言語モデル(LLM)は目覚ましい能力を示すが、幻覚、時代遅れの知識、不透明さ、説明不能な推論といった制限に悩まされている。
Retrieval-Augmented Generation (RAG)は、外部データベースを活用して生成されたコンテンツの一貫性と一貫性を改善することで、実行可能なソリューションであることが証明されている。
論文 参考訳(メタデータ) (2024-09-20T10:36:49Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。