論文の概要: Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2502.06872v1
- Date: Sat, 08 Feb 2025 06:50:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:18.839835
- Title: Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey
- Title(参考訳): 大規模言語モデルのための信頼性の高い検索対象生成に向けて:調査
- Authors: Bo Ni, Zheyuan Liu, Leyao Wang, Yongjia Lei, Yuying Zhao, Xueqi Cheng, Qingkai Zeng, Luna Dong, Yinglong Xia, Krishnaram Kenthapadi, Ryan Rossi, Franck Dernoncourt, Md Mehrab Tanjim, Nesreen Ahmed, Xiaorui Liu, Wenqi Fan, Erik Blasch, Yu Wang, Meng Jiang, Tyler Derr,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
- 参考スコア(独自算出の注目度): 92.36487127683053
- License:
- Abstract: Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC). By integrating context retrieval into content generation, RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks. However, despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including robustness issues, privacy concerns, adversarial attacks, and accountability issues. Addressing these risks is critical for future applications of RAG systems, as they directly impact their trustworthiness. Although various methods have been developed to improve the trustworthiness of RAG methods, there is a lack of a unified perspective and framework for research in this topic. Thus, in this paper, we aim to address this gap by providing a comprehensive roadmap for developing trustworthy RAG systems. We place our discussion around five key perspectives: reliability, privacy, safety, fairness, explainability, and accountability. For each perspective, we present a general framework and taxonomy, offering a structured approach to understanding the current challenges, evaluating existing solutions, and identifying promising future research directions. To encourage broader adoption and innovation, we also highlight the downstream applications where trustworthy RAG systems have a significant impact.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、AIGC(Artificial Intelligence-Generated Content)の課題に対処するために設計された高度な技術である。
コンテキスト検索をコンテンツ生成に統合することにより、RAGは信頼性と最新の外部知識を提供し、幻覚を低減し、幅広いタスクにわたって関連するコンテキストを保証する。
しかしながら、RAGの成功と可能性にもかかわらず、最近の研究はRAGパラダイムが、堅牢性の問題、プライバシーの懸念、敵対的攻撃、説明責任問題など、新たなリスクをもたらすことを示している。
これらのリスクに対処することは、RAGシステムの将来の応用にとって重要である。
RAG手法の信頼性向上のために様々な手法が開発されているが,本研究には統一的な視点と枠組みが欠如している。
そこで本稿では,信頼性の高いRAGシステムを開発するための総合的なロードマップを提供することで,このギャップに対処することを目的とする。
信頼性,プライバシ,安全性,公正性,説明可能性,説明責任という,5つの重要な視点について議論します。
それぞれの観点から、現状の課題を理解し、既存のソリューションを評価し、将来有望な研究方向性を特定するための構造化されたアプローチを提供する。
より広範な採用とイノベーションを促進するために、信頼できるRAGシステムが大きな影響を与える下流アプリケーションを強調します。
関連論文リスト
- Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models [20.605487145370752]
現実的な条件下での制御分析により,不完全検索の増大は避けられず,極めて有害である可能性が示唆された。
本稿では,LLMの内部知識から必須情報を適応的に抽出する新しいRAG手法であるAstute RAGを提案する。
さらに分析した結果, Astute RAG は知識紛争を効果的に解決し,RAG システムの信頼性と信頼性を向上させることが判明した。
論文 参考訳(メタデータ) (2024-10-09T17:59:58Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
我々は、RAGモデルの予測が誤りであり、現実のアプリケーションにおいて制御不能なリスクをもたらす可能性がどの程度あるかに焦点を当てる。
本研究は,RAGの予測に影響を及ぼす2つの重要な潜伏要因を明らかにする。
我々は,これらの要因をモデルに誘導し,その応答に与える影響を解析する,反実的プロンプトフレームワークを開発した。
論文 参考訳(メタデータ) (2024-09-24T14:52:14Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - RAG Does Not Work for Enterprises [0.0]
Retrieval-Augmented Generation (RAG)は、知識検索を取り入れた大規模言語モデル出力の精度と妥当性を向上させる。
企業におけるRAGの実装は、データセキュリティ、正確性、スケーラビリティ、統合に関する課題を引き起こす。
本稿では、エンタープライズRAGのユニークな要件について検討し、現在のアプローチと限界を調査し、セマンティック検索、ハイブリッドクエリ、最適化された検索の潜在的な進歩について考察する。
論文 参考訳(メタデータ) (2024-05-31T23:30:52Z) - DuetRAG: Collaborative Retrieval-Augmented Generation [57.440772556318926]
協調検索拡張生成フレームワークであるDuetRAGが提案されている。
ブートストラップの哲学はドメインフィニングとRAGモデルを同時に統合することである。
論文 参考訳(メタデータ) (2024-05-12T09:48:28Z) - C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models [57.10361282229501]
RAGモデルの生成リスクを認証する最初のフレームワークであるC-RAGを提案する。
具体的には、RAGモデルに対して共形リスク分析を行い、生成リスクの上限以上の信頼度を認定する。
検索モデルと変圧器の品質が非自明な場合, RAG は単一の LLM よりも低い共形生成リスクを達成できることを示す。
論文 参考訳(メタデータ) (2024-02-05T16:46:16Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
大きな言語モデル(LLM)には印象的な能力があるが、幻覚のような課題に直面している。
Retrieval-Augmented Generation (RAG) は,外部データベースからの知識を取り入れた,有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-18T07:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。