Symbolic Learning for Material Discovery
- URL: http://arxiv.org/abs/2312.11487v1
- Date: Thu, 30 Nov 2023 15:56:00 GMT
- Title: Symbolic Learning for Material Discovery
- Authors: Daniel Cunnington, Flaviu Cipcigan, Rodrigo Neumann Barros Ferreira,
Jonathan Booth
- Abstract summary: SyMDis is a sample efficient optimisation method based on symbolic learning.
SyMDis performs comparably to a state-of-the-art optimiser, whilst learning interpretable rules to aid physical and chemical verification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering new materials is essential to solve challenges in climate change,
sustainability and healthcare. A typical task in materials discovery is to
search for a material in a database which maximises the value of a function.
That function is often expensive to evaluate, and can rely upon a simulation or
an experiment. Here, we introduce SyMDis, a sample efficient optimisation
method based on symbolic learning, that discovers near-optimal materials in a
large database. SyMDis performs comparably to a state-of-the-art optimiser,
whilst learning interpretable rules to aid physical and chemical verification.
Furthermore, the rules learned by SyMDis generalise to unseen datasets and
return high performing candidates in a zero-shot evaluation, which is difficult
to achieve with other approaches.
Related papers
- Assessing data-driven predictions of band gap and electrical conductivity for transparent conducting materials [10.3054383984768]
We propose a data-driven framework aimed at accelerating the discovery of new transparent conducting materials.
To mitigate the shortage of available data, we create and validate unique experimental databases.
We test our approach on a list of 55 compositions containing typical elements of known TCMs.
arXiv Detail & Related papers (2024-11-21T11:37:05Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
We consider the problem of active learning for global sensitivity analysis of expensive black-box functions.
Since function evaluations are expensive, we use active learning to prioritize experimental resources where they yield the most value.
We propose novel active learning acquisition functions that directly target key quantities of derivative-based global sensitivity measures.
arXiv Detail & Related papers (2024-07-13T01:41:12Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
We develop a chemist AI agent, powered by large language models (LLMs), to create structured datasets from natural language text.
Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles.
arXiv Detail & Related papers (2023-12-18T20:29:58Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Benchmarking Active Learning Strategies for Materials Optimization and
Discovery [17.8738267360992]
We present a reference dataset to benchmark active learning strategies in the form of various acquisition functions.
We discuss the relationship between algorithm performance, materials search space, complexity, and the incorporation of prior knowledge.
arXiv Detail & Related papers (2022-04-12T14:27:33Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Synthetic Benchmarks for Scientific Research in Explainable Machine
Learning [14.172740234933215]
We release XAI-Bench: a suite of synthetic datasets and a library for benchmarking feature attribution algorithms.
Unlike real-world datasets, synthetic datasets allow the efficient computation of conditional expected values.
We demonstrate the power of our library by benchmarking popular explainability techniques across several evaluation metrics and identifying failure modes for popular explainers.
arXiv Detail & Related papers (2021-06-23T17:10:21Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
imitation learning from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics.
Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence.
We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function.
arXiv Detail & Related papers (2021-06-23T03:43:10Z) - On the Robustness of Active Learning [0.7340017786387767]
Active Learning is concerned with how to identify the most useful samples for a Machine Learning algorithm to be trained with.
We find that it is often applied with not enough care and domain knowledge.
We propose the new "Sum of Squared Logits" method based on the Simpson diversity index and investigate the effect of using the confusion matrix for balancing in sample selection.
arXiv Detail & Related papers (2020-06-18T09:07:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.