論文の概要: A Natural Language Processing-Based Classification and Mode-Based Ranking of Musculoskeletal Disorder Risk Factors
- arxiv url: http://arxiv.org/abs/2312.11517v4
- Date: Tue, 05 Nov 2024 13:21:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:57:27.346303
- Title: A Natural Language Processing-Based Classification and Mode-Based Ranking of Musculoskeletal Disorder Risk Factors
- Title(参考訳): 自然言語処理に基づく筋骨格障害危険因子の分類とモード分類
- Authors: Md Abrar Jahin, Subrata Talapatra,
- Abstract要約: 本研究は,NLP(Natural Language Processing)とモードベースランキングを併用して,筋骨格障害(MSD)のリスク要因を解明する。
目的は、集中した予防と治療のための理解、分類、優先順位付けを洗練することである。
8つのNLPモデルを評価し、事前訓練されたトランスフォーマー、コサイン類似性、距離メトリクスを組み合わせて、因子を個人、生体力学、職場、心理学、組織クラスに分類する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This research delves into Musculoskeletal Disorder (MSD) risk factors, using a blend of Natural Language Processing (NLP) and mode-based ranking. The aim is to refine understanding, classification, and prioritization for focused prevention and treatment. Eight NLP models are evaluated, combining pre-trained transformers, cosine similarity, and distance metrics to categorize factors into personal, biomechanical, workplace, psychological, and organizational classes. BERT with cosine similarity achieves 28% accuracy; sentence transformer with Euclidean, Bray-Curtis, and Minkowski distances scores 100%. With 10-fold cross-validation, statistical tests ensure robust results. Survey data and mode-based ranking determine severity hierarchy, aligning with the literature. "Working posture" is the most severe, highlighting posture's role. Survey insights emphasize "Job insecurity," "Effort reward imbalance," and "Poor employee facility" as significant contributors. Rankings offer actionable insights for MSD prevention. The study suggests targeted interventions, workplace improvements, and future research directions. This integrated NLP and ranking approach enhances MSD comprehension and informs occupational health strategies.
- Abstract(参考訳): 本研究は,NLP(Natural Language Processing)とモードベースランキングを併用して,筋骨格障害(MSD)のリスク要因を解明する。
目的は、集中した予防と治療のための理解、分類、優先順位付けを洗練することである。
8つのNLPモデルを評価し、事前訓練されたトランスフォーマー、コサイン類似性、距離メトリクスを組み合わせて、因子を個人、生体力学、職場、心理学、組織クラスに分類する。
コサイン類似度を持つBERTは精度が28%、ユークリッド語、ブレイ・クルティス語、ミンコフスキー語の文変換器は100%である。
10倍のクロスバリデーションでは、統計的テストによって堅牢な結果が得られる。
調査データとモードベースのランキングは、文献と整合して重大度階層を決定する。
「作業姿勢」が最も重く、姿勢の役割を強調している。
調査では、重要な貢献者として「雇用の不安」、「報酬の不均衡」、「従業員の貧困施設」が強調されている。
ランキングはMSD予防のための実用的な洞察を提供する。
この研究は、介入、職場の改善、将来の研究の方向性を示唆している。
この統合NLPとランキングアプローチは、MSDの理解を高め、職業的健康戦略を通知する。
関連論文リスト
- Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
人間の嗜好を微調整した大型言語モデル(LLM)は、その能力向上に成功している。
しかし、微調整中のLLMの安全性確保は依然として重要な懸念事項である。
本稿では,BFPO(Bi-Factorial Preference Optimization)と呼ばれる教師あり学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-27T17:31:21Z) - Evaluating the Effectiveness of the Foundational Models for Q&A Classification in Mental Health care [0.18416014644193068]
プレトレーニング言語モデル(PLM)は、メンタルヘルスを変革する可能性がある。
本研究は,精神保健領域における質問紙と回答紙の分類におけるPLMの有効性を評価するものである。
論文 参考訳(メタデータ) (2024-06-23T00:11:07Z) - A comparative study on feature selection for a risk prediction model for
colorectal cancer [0.0]
この研究は大腸癌に焦点を当て、リスク予測モデルのパフォーマンスの観点からいくつかの特徴ランキングアルゴリズムを評価する。
この研究で提案された視覚的アプローチにより、ニューラルネットワークベースのラッパーランキングが最も不安定であり、ランダムフォレストが最も安定である。
論文 参考訳(メタデータ) (2024-02-07T22:14:14Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - Ontology-aware Learning and Evaluation for Audio Tagging [56.59107110017436]
平均平均精度(mAP)は、異なる種類の音をそれらの関係を考慮せずに独立したクラスとして扱う。
オントロジー認識平均平均精度(OmAP)は、評価中にAudioSetオントロジー情報を利用することで、mAPの弱点に対処する。
我々は人間の評価を行い、OmAPはmAPよりも人間の知覚と一致していることを示した。
論文 参考訳(メタデータ) (2022-11-22T11:35:14Z) - A Tale of HodgeRank and Spectral Method: Target Attack Against Rank
Aggregation Is the Fixed Point of Adversarial Game [153.74942025516853]
ランクアグリゲーション手法の本質的な脆弱性は文献ではよく研究されていない。
本稿では,ペアデータの変更による集計結果の指定を希望する目的のある敵に焦点をあてる。
提案した標的攻撃戦略の有効性は,一連の玩具シミュレーションと実世界のデータ実験によって実証された。
論文 参考訳(メタデータ) (2022-09-13T05:59:02Z) - Addressing Class Imbalance in Semi-supervised Image Segmentation: A
Study on Cardiac MRI [28.656853454251426]
特定のクラスに対する不十分なトレーニングは、生成された擬似ラベルにより多くのノイズを導入し、全体的な学習に影響を与える可能性がある。
授業中にクラスワイドのパフォーマンスを記録する信頼度アレーの維持について提案する。
これらの信頼度スコアのファジィ融合は、各サンプルにおける個々の信頼度指標を適応的に優先順位付けするために提案される。
提案手法は, 動的重み付けを施した低性能クラスをすべて考慮し, トレーニング中のノイズの大半を除去しようとするものである。
論文 参考訳(メタデータ) (2022-08-31T21:25:00Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Targeted VAE: Variational and Targeted Learning for Causal Inference [39.351088248776435]
観測データによる因果推論は、幅広いタスクで非常に有用である。
観察データを用いた因果推論の実施には,2つの重要な課題がある。
構造化推論とターゲット学習を組み合わせることで、これらの2つの課題に対処する。
論文 参考訳(メタデータ) (2020-09-28T16:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。