論文の概要: FastSR-NeRF: Improving NeRF Efficiency on Consumer Devices with A Simple
Super-Resolution Pipeline
- arxiv url: http://arxiv.org/abs/2312.11537v2
- Date: Wed, 20 Dec 2023 23:17:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 17:48:25.089160
- Title: FastSR-NeRF: Improving NeRF Efficiency on Consumer Devices with A Simple
Super-Resolution Pipeline
- Title(参考訳): FastSR-NeRF: 簡易超解像パイプラインを用いた消費者デバイスにおけるNeRF効率の向上
- Authors: Chien-Yu Lin, Qichen Fu, Thomas Merth, Karren Yang, Anurag Ranjan
- Abstract要約: ニューラル放射場(NeRF)の出力をアップスケールする超解像(SR)技術が提案されている。
本稿では,SRをコストのかかるトレーニングやアーキテクチャの変更なしに効率向上に活用することを目的としている。
- 参考スコア(独自算出の注目度): 10.252591107152503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Super-resolution (SR) techniques have recently been proposed to upscale the
outputs of neural radiance fields (NeRF) and generate high-quality images with
enhanced inference speeds. However, existing NeRF+SR methods increase training
overhead by using extra input features, loss functions, and/or expensive
training procedures such as knowledge distillation. In this paper, we aim to
leverage SR for efficiency gains without costly training or architectural
changes. Specifically, we build a simple NeRF+SR pipeline that directly
combines existing modules, and we propose a lightweight augmentation technique,
random patch sampling, for training. Compared to existing NeRF+SR methods, our
pipeline mitigates the SR computing overhead and can be trained up to 23x
faster, making it feasible to run on consumer devices such as the Apple
MacBook. Experiments show our pipeline can upscale NeRF outputs by 2-4x while
maintaining high quality, increasing inference speeds by up to 18x on an NVIDIA
V100 GPU and 12.8x on an M1 Pro chip. We conclude that SR can be a simple but
effective technique for improving the efficiency of NeRF models for consumer
devices.
- Abstract(参考訳): ニューラルレイディアンスフィールド(NeRF)の出力をアップスケールし、推論速度を向上した高品質な画像を生成するための超解像(SR)技術が最近提案されている。
しかし, 既存のNeRF+SR法は, 付加的な入力特徴, 損失関数, 知識蒸留などの高価な訓練手順を用いることで, トレーニングのオーバーヘッドを増大させる。
本稿では,SRをコストのかかるトレーニングやアーキテクチャの変更なしに効率向上に活用することを目的とする。
具体的には、既存のモジュールを直接結合する単純なNeRF+SRパイプラインを構築し、トレーニングのための軽量な拡張手法、ランダムパッチサンプリングを提案する。
既存のNeRF+SR手法と比較して、私たちのパイプラインはSRコンピューティングのオーバーヘッドを軽減し、最大で23倍高速にトレーニングできるため、Apple MacBookのような消費者向けデバイス上で実行することが可能です。
実験により、パイプラインは高品質を維持しながら2~4倍のNeRF出力をアップスケールでき、NVIDIA V100 GPUでは18倍、M1 Proチップでは12.8倍の推論速度が向上した。
我々は、SRは、消費者デバイスにおけるNeRFモデルの効率を改善するための、シンプルだが効果的な手法であると結論付けている。
関連論文リスト
- NeRF-XL: Scaling NeRFs with Multiple GPUs [72.75214892939411]
我々は、複数のGPUにまたがるニューラルラジアンス場(NeRF)を分散する原理的手法であるNeRF-XLを提案する。
パラメータ数を大きくして再構成品質を向上し,GPUの高速化を実現した。
我々は,25km2の都市部をカバーする258K画像を含む,これまでで最大規模のオープンソースデータセットMatrixCityを含む,さまざまなデータセットに対するNeRF-XLの有効性を実証した。
論文 参考訳(メタデータ) (2024-04-24T21:43:15Z) - Prompt2NeRF-PIL: Fast NeRF Generation via Pretrained Implicit Latent [61.56387277538849]
本稿では,3次元シーンの直接条件付けと高速なNeRFパラメータ生成のための高速なNeRF生成について検討する。
Prompt2NeRF-PILは、単一の前方通過で様々な3Dオブジェクトを生成することができる。
我々は,テキストからNeRFモデルDreamFusionと画像からNeRF手法Zero-1-to-3の3次元再構成速度を3倍から5倍に高速化することを示す。
論文 参考訳(メタデータ) (2023-12-05T08:32:46Z) - Efficient View Synthesis with Neural Radiance Distribution Field [61.22920276806721]
我々は,リアルタイムに効率的なビュー合成を目標とするニューラルレージアンス分布場(NeRDF)という新しい表現を提案する。
我々は、NeLFのように1ピクセル当たりの1つのネットワーク転送でレンダリング速度を保ちながら、NeRFに似た小さなネットワークを使用する。
実験の結果,提案手法は既存の手法よりも速度,品質,ネットワークサイズとのトレードオフが良好であることがわかった。
論文 参考訳(メタデータ) (2023-08-22T02:23:28Z) - From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm [57.73868344064043]
我々は、劣化駆動の視点間ミキサーを学習する一般的なNeRF-Agnostic restorerパラダイムであるNeRFLiXを提案する。
また、より強力な2段階のNeRF分解シミュレータとより高速なビューポイントミキサーを備えたNeRFLiX++を提案する。
NeRFLiX++は、ノイズの多い低解像度のNeRFレンダリングビューからフォトリアリスティックな超高解像度出力を復元することができる。
論文 参考訳(メタデータ) (2023-06-10T09:19:19Z) - Re-ReND: Real-time Rendering of NeRFs across Devices [56.081995086924216]
Re-ReNDは、NeRFを標準グラフィックスパイプラインで効率的に処理できる表現に変換することで、リアルタイムのパフォーマンスを実現するように設計されている。
Re-ReNDはレンダリング速度が2.6倍に向上し、最先端技術では品質が損なわれることなく達成できることがわかった。
論文 参考訳(メタデータ) (2023-03-15T15:59:41Z) - FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency
Regularization [32.1581416980828]
本稿では、従来の手法よりも優れた驚くほど単純なベースラインである周波数正規化NeRF(FreeNeRF)を提案する。
我々は、数ショットのニューラルレンダリングにおける重要な課題を分析し、NeRFのトレーニングにおいて周波数が重要な役割を果たすことを発見した。
論文 参考訳(メタデータ) (2023-03-13T18:59:03Z) - Compressing Explicit Voxel Grid Representations: fast NeRFs become also
small [3.1473798197405944]
Re:NeRFは、同等の性能を維持しながら、NeRFモデルのメモリストレージを削減することを目的としている。
3つのEVG-NeRFアーキテクチャを4つの人気のあるベンチマークでベンチマークする。
論文 参考訳(メタデータ) (2022-10-23T16:42:29Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
主に低分解能(LR)入力を用いた高分解能(HR)新規ビュー合成のソリューションであるNeRF-SRを提案する。
提案手法は,多層パーセプトロンを用いて各点密度と色を予測するニューラルレージアンス場(NeRF)上に構築されている。
論文 参考訳(メタデータ) (2021-12-03T07:33:47Z) - VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance
Field [28.087183395793236]
本稿では,Voxel-Accelearated NeRF (VaxNeRF)を提案する。
VaxNeRFは、ハイパフォーマンスなJaxNeRF上での学習を約2~8倍高速化する。
VaxNeRFが新たなNeRF拡張とアプリケーションを強化し、加速できることを願っています。
論文 参考訳(メタデータ) (2021-11-25T14:56:53Z) - Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance
Fields [45.84983186882732]
mip-NeRF"("mipmap")は、NeRFを拡張してシーンを継続的に価値あるスケールで表現します。
mip-NeRFは、光線の代わりにアンチエイリアスコニカルフラストを効率的にレンダリングすることで、不快なエイリアスアーティファクトを低減します。
NeRFと比較して、mip-NeRFはNeRFで提示されたデータセットでは平均エラー率を16%、そのデータセットでは60%削減する。
論文 参考訳(メタデータ) (2021-03-24T18:02:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。