論文の概要: NeRF-XL: Scaling NeRFs with Multiple GPUs
- arxiv url: http://arxiv.org/abs/2404.16221v1
- Date: Wed, 24 Apr 2024 21:43:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 15:17:42.286598
- Title: NeRF-XL: Scaling NeRFs with Multiple GPUs
- Title(参考訳): NeRF-XL:複数のGPUによるNeRFのスケーリング
- Authors: Ruilong Li, Sanja Fidler, Angjoo Kanazawa, Francis Williams,
- Abstract要約: 我々は、複数のGPUにまたがるニューラルラジアンス場(NeRF)を分散する原理的手法であるNeRF-XLを提案する。
パラメータ数を大きくして再構成品質を向上し,GPUの高速化を実現した。
我々は,25km2の都市部をカバーする258K画像を含む,これまでで最大規模のオープンソースデータセットMatrixCityを含む,さまざまなデータセットに対するNeRF-XLの有効性を実証した。
- 参考スコア(独自算出の注目度): 72.75214892939411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present NeRF-XL, a principled method for distributing Neural Radiance Fields (NeRFs) across multiple GPUs, thus enabling the training and rendering of NeRFs with an arbitrarily large capacity. We begin by revisiting existing multi-GPU approaches, which decompose large scenes into multiple independently trained NeRFs, and identify several fundamental issues with these methods that hinder improvements in reconstruction quality as additional computational resources (GPUs) are used in training. NeRF-XL remedies these issues and enables the training and rendering of NeRFs with an arbitrary number of parameters by simply using more hardware. At the core of our method lies a novel distributed training and rendering formulation, which is mathematically equivalent to the classic single-GPU case and minimizes communication between GPUs. By unlocking NeRFs with arbitrarily large parameter counts, our approach is the first to reveal multi-GPU scaling laws for NeRFs, showing improvements in reconstruction quality with larger parameter counts and speed improvements with more GPUs. We demonstrate the effectiveness of NeRF-XL on a wide variety of datasets, including the largest open-source dataset to date, MatrixCity, containing 258K images covering a 25km^2 city area.
- Abstract(参考訳): 我々は、複数のGPUにまたがってニューラルネットワーク場(NeRF)を分散する原理的な方法であるNeRF-XLを提案し、任意の容量でNeRFのトレーニングとレンダリングを可能にする。
まず,大規模シーンを独立に訓練された複数のNeRFに分解する既存のマルチGPUアプローチを再検討し,これらの手法の基本的な問題点を特定し,トレーニングにGPU(Advanced Computer Resources)を用いることによって,再構成品質の改善を阻害する。
NeRF-XLはこれらの問題を修正し、単により多くのハードウェアを使用することで、任意の数のパラメータでNeRFのトレーニングとレンダリングを可能にする。
提案手法のコアとなる分散トレーニングとレンダリングの定式化は,従来のシングルGPUの場合と数学的に等価であり,GPU間の通信を最小化する。
任意のパラメータ数でNeRFをアンロックすることにより、NeRFのマルチGPUスケーリング法則を初めて明らかにし、パラメータ数を大きくした再構成品質の向上とGPUの高速化を実現した。
我々は,25km^2の都市部をカバーする258K画像を含む,これまでで最大規模のオープンソースデータセットMatrixCityを含む,さまざまなデータセットに対するNeRF-XLの有効性を実証した。
関連論文リスト
- FastSR-NeRF: Improving NeRF Efficiency on Consumer Devices with A Simple
Super-Resolution Pipeline [10.252591107152503]
ニューラル放射場(NeRF)の出力をアップスケールする超解像(SR)技術が提案されている。
本稿では,SRをコストのかかるトレーニングやアーキテクチャの変更なしに効率向上に活用することを目的としている。
論文 参考訳(メタデータ) (2023-12-15T21:02:23Z) - Re-Nerfing: Improving Novel Views Synthesis through Novel Views Synthesis [80.3686833921072]
Re-Nerfingは単純で汎用的なマルチステージデータ拡張アプローチである。
利用可能なビューでNeRFをトレーニングした後、最適化されたNeRFを使用して、元のビューに関する擬似ビューを合成します。
また、原画像と疑似ビューの両方が不確実領域を隠蔽する第2のNeRFを訓練する。
論文 参考訳(メタデータ) (2023-12-04T18:56:08Z) - Efficient View Synthesis with Neural Radiance Distribution Field [61.22920276806721]
我々は,リアルタイムに効率的なビュー合成を目標とするニューラルレージアンス分布場(NeRDF)という新しい表現を提案する。
我々は、NeLFのように1ピクセル当たりの1つのネットワーク転送でレンダリング速度を保ちながら、NeRFに似た小さなネットワークを使用する。
実験の結果,提案手法は既存の手法よりも速度,品質,ネットワークサイズとのトレードオフが良好であることがわかった。
論文 参考訳(メタデータ) (2023-08-22T02:23:28Z) - DReg-NeRF: Deep Registration for Neural Radiance Fields [66.69049158826677]
我々は,人間の介入なしにオブジェクト中心のアノテートシーンにおけるNeRF登録問題を解くためにDReg-NeRFを提案する。
提案手法は,SOTAポイントクラウド登録方式を大きなマージンで打ち負かす。
論文 参考訳(メタデータ) (2023-08-18T08:37:49Z) - Federated Neural Radiance Fields [36.42289161746808]
複数の計算ノードがそれぞれのシーンの異なる観察セットを取得し、共通のNeRFを並列に学習する。
このアルゴリズムは、トレーニング作業を複数の計算ノードに分割し、イメージを中央ノードにプールする必要をなくします。
また、NeRF層の低ランク分解に基づく手法を導入し、帯域幅を削減し、アグリゲーションのためのモデルパラメーターを送信する。
論文 参考訳(メタデータ) (2023-05-02T02:33:22Z) - Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs [54.41204057689033]
我々は、ニューラルネットワーク(NeRF)を活用して、建物にまたがる大規模な視覚的キャプチャーや、主にドローンデータから収集された複数の都市ブロックからインタラクティブな3D環境を構築する方法について検討する。
NeRFが伝統的に評価されている単一のオブジェクトシーンとは対照的に、この設定には複数の課題がある。
我々は、訓練画像(またはむしろピクセル)を、並列で訓練できる異なるNeRFサブモジュールに分割する単純なクラスタリングアルゴリズムを導入する。
論文 参考訳(メタデータ) (2021-12-20T17:40:48Z) - VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance
Field [28.087183395793236]
本稿では,Voxel-Accelearated NeRF (VaxNeRF)を提案する。
VaxNeRFは、ハイパフォーマンスなJaxNeRF上での学習を約2~8倍高速化する。
VaxNeRFが新たなNeRF拡張とアプリケーションを強化し、加速できることを願っています。
論文 参考訳(メタデータ) (2021-11-25T14:56:53Z) - ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep
Learning [9.322987670900778]
ZeRO-Infinityは、現在の世代のGPUクラスタでトレーニングするための数十から数百兆のパラメータを持つモデルに適合できます。
1つのNVIDIA DGX-2ノードで1兆のパラメータモデルを微調整できるため、大きなモデルの方がアクセスしやすい。
論文 参考訳(メタデータ) (2021-04-16T02:22:12Z) - Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance
Fields [45.84983186882732]
mip-NeRF"("mipmap")は、NeRFを拡張してシーンを継続的に価値あるスケールで表現します。
mip-NeRFは、光線の代わりにアンチエイリアスコニカルフラストを効率的にレンダリングすることで、不快なエイリアスアーティファクトを低減します。
NeRFと比較して、mip-NeRFはNeRFで提示されたデータセットでは平均エラー率を16%、そのデータセットでは60%削減する。
論文 参考訳(メタデータ) (2021-03-24T18:02:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。