Opportunities and Challenges of Applying Large Language Models in
Building Energy Efficiency and Decarbonization Studies: An Exploratory
Overview
- URL: http://arxiv.org/abs/2312.11701v1
- Date: Mon, 18 Dec 2023 20:58:58 GMT
- Title: Opportunities and Challenges of Applying Large Language Models in
Building Energy Efficiency and Decarbonization Studies: An Exploratory
Overview
- Authors: Liang Zhang, Zhelun Chen
- Abstract summary: This paper explores the application, implications, and potential of Large Language Models (LLMs) in building energy efficiency and decarbonization studies.
Despite the promising potential of LLMs, challenges including complex and expensive computation, data privacy, security and copyright, complexity in fine-tuned LLMs, and self-consistency are discussed.
- Score: 3.580636644178055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the rapid advancement and impressive capabilities of Large
Language Models (LLMs) have been evident across various domains. This paper
explores the application, implications, and potential of LLMs in building
energy efficiency and decarbonization studies. The wide-ranging capabilities of
LLMs are examined in the context of the building energy field, including
intelligent control systems, code generation, data infrastructure, knowledge
extraction, and education. Despite the promising potential of LLMs, challenges
including complex and expensive computation, data privacy, security and
copyright, complexity in fine-tuned LLMs, and self-consistency are discussed.
The paper concludes with a call for future research focused on the enhancement
of LLMs for domain-specific tasks, multi-modal LLMs, and collaborative research
between AI and energy experts.
Related papers
- A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
Large language models (MLLMs) integrate text, images, video and audio to enable AI systems for cross-modal understanding and generation.
Book examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning.
Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights.
arXiv Detail & Related papers (2024-11-09T20:56:23Z) - Decoding Large-Language Models: A Systematic Overview of Socio-Technical Impacts, Constraints, and Emerging Questions [1.1970409518725493]
The article highlights the application areas that could have a positive impact on society along with the ethical considerations.
It includes responsible development considerations, algorithmic improvements, ethical challenges, and societal implications.
arXiv Detail & Related papers (2024-09-25T14:36:30Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - The Price of Prompting: Profiling Energy Use in Large Language Models Inference [5.254805405012678]
This paper introduces MELODI, a framework crafted to monitor and analyze the energy consumed during large language models inference processes.
The dataset, generated using MELODI, encompasses a broad spectrum of LLM deployment frameworks, multiple language models, and extensive prompt datasets.
Our findings indicate substantial disparities in energy efficiency, suggesting ample scope for optimization and adoption of sustainable measures.
arXiv Detail & Related papers (2024-07-04T12:16:28Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
Large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and high-level task planning.
We propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator.
arXiv Detail & Related papers (2024-03-30T08:28:08Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap [26.959633651475016]
The interplay between large language models (LLMs) and evolutionary algorithms (EAs) share a common pursuit of applicability in complex problems.
The abundant domain knowledge inherent in LLMs could enable EA to conduct more intelligent searches.
This paper provides a thorough review and a forward-looking roadmap, categorizing the reciprocal inspiration into two main avenues.
arXiv Detail & Related papers (2024-01-18T14:58:17Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.
This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.