Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods
- URL: http://arxiv.org/abs/2404.00282v3
- Date: Wed, 30 Oct 2024 02:22:46 GMT
- Title: Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods
- Authors: Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua Zhao, Jinyue Yan, Yun Li,
- Abstract summary: Large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and high-level task planning.
We propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator.
- Score: 18.771658054884693
- License:
- Abstract: With extensive pre-trained knowledge and high-level general capabilities, large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and high-level task planning. In this survey, we provide a comprehensive review of the existing literature in LLM-enhanced RL and summarize its characteristics compared to conventional RL methods, aiming to clarify the research scope and directions for future studies. Utilizing the classical agent-environment interaction paradigm, we propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator. For each role, we summarize the methodologies, analyze the specific RL challenges that are mitigated, and provide insights into future directions. Lastly, a comparative analysis of each role, potential applications, prospective opportunities, and challenges of the LLM-enhanced RL are discussed. By proposing this taxonomy, we aim to provide a framework for researchers to effectively leverage LLMs in the RL field, potentially accelerating RL applications in complex applications such as robotics, autonomous driving, and energy systems.
Related papers
- Reinforcement Learning Problem Solving with Large Language Models [0.0]
Large Language Models (LLMs) have an extensive amount of world knowledge, and this has enabled their application in various domains to improve the performance of Natural Language Processing (NLP) tasks.
This has also facilitated a more accessible paradigm of conversation-based interactions between humans and AI systems to solve intended problems.
We show the practicality of our approach through two detailed case studies for "Research Scientist" and "Legal Matter Intake"
arXiv Detail & Related papers (2024-04-29T12:16:08Z) - A Survey on Efficient Inference for Large Language Models [25.572035747669275]
Large Language Models (LLMs) have attracted extensive attention due to their remarkable performance across various tasks.
The substantial computational and memory requirements of LLM inference pose challenges for deployment in resource-constrained scenarios.
This paper presents a comprehensive survey of the existing literature on efficient LLM inference.
arXiv Detail & Related papers (2024-04-22T15:53:08Z) - Automating Research Synthesis with Domain-Specific Large Language Model Fine-Tuning [0.9110413356918055]
This research pioneers the use of fine-tuned Large Language Models (LLMs) to automate Systematic Literature Reviews ( SLRs)
Our study employed the latest fine-tuning methodologies together with open-sourced LLMs, and demonstrated a practical and efficient approach to automating the final execution stages of an SLR process.
The results maintained high fidelity in factual accuracy in LLM responses, and were validated through the replication of an existing PRISMA-conforming SLR.
arXiv Detail & Related papers (2024-04-08T00:08:29Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Mutual Enhancement of Large Language and Reinforcement Learning Models
through Bi-Directional Feedback Mechanisms: A Case Study [1.3597551064547502]
We employ a teacher-student learning framework to tackle problems of Large Language Models (LLMs) and reinforcement learning (RL) models.
Within this framework, the LLM acts as a teacher, while the RL model acts as a student.
We propose a practical algorithm to address the problem and conduct empirical experiments to evaluate the effectiveness of our method.
arXiv Detail & Related papers (2024-01-12T14:35:57Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Ensemble Reinforcement Learning: A Survey [43.17635633600716]
Reinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific and applied problems.
In response, ensemble reinforcement learning (ERL), a promising approach that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity.
ERL leverages multiple models or training algorithms to comprehensively explore the problem space and possesses strong generalization capabilities.
arXiv Detail & Related papers (2023-03-05T09:26:44Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Variational Empowerment as Representation Learning for Goal-Based
Reinforcement Learning [114.07623388322048]
We discuss how the standard goal-conditioned RL (GCRL) is encapsulated by the objective variational empowerment.
Our work lays a novel foundation from which to evaluate, analyze, and develop representation learning techniques in goal-based RL.
arXiv Detail & Related papers (2021-06-02T18:12:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.