Locally-Minimal Probabilistic Explanations
- URL: http://arxiv.org/abs/2312.11831v3
- Date: Mon, 6 May 2024 07:49:24 GMT
- Title: Locally-Minimal Probabilistic Explanations
- Authors: Yacine Izza, Kuldeep S. Meel, Joao Marques-Silva,
- Abstract summary: Most work on Explainable Artificial Intelligence (XAI) offers no guarantees of rigor.
In high-stakes domains, e.g. uses of AI that impact humans, the lack of rigor of explanations can have disastrous consequences.
This paper proposes novel efficient algorithms for the computation of locally-minimal PXAps.
- Score: 33.95940778422656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable Artificial Intelligence (XAI) is widely regarding as a cornerstone of trustworthy AI. Unfortunately, most work on XAI offers no guarantees of rigor. In high-stakes domains, e.g. uses of AI that impact humans, the lack of rigor of explanations can have disastrous consequences. Formal abductive explanations offer crucial guarantees of rigor and so are of interest in high-stakes uses of machine learning (ML). One drawback of abductive explanations is explanation size, justified by the cognitive limits of human decision-makers. Probabilistic abductive explanations (PAXps) address this limitation, but their theoretical and practical complexity makes their exact computation most often unrealistic. This paper proposes novel efficient algorithms for the computation of locally-minimal PXAps, which offer high-quality approximations of PXAps in practice. The experimental results demonstrate the practical efficiency of the proposed algorithms.
Related papers
- Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation [19.22391463965126]
Some uses of machine learning (ML) involve high-stakes and safety-critical applications.
This paper investigates novel algorithms for scaling up the performance of logic-based explainers.
arXiv Detail & Related papers (2024-05-14T03:42:33Z) - How Well Do Feature-Additive Explainers Explain Feature-Additive
Predictors? [12.993027779814478]
We ask the question: can popular feature-additive explainers (e.g., LIME, SHAP, SHAPR, MAPLE, and PDP) explain feature-additive predictors?
Herein, we evaluate such explainers on ground truth that is analytically derived from the additive structure of a model.
Our results suggest that all explainers eventually fail to correctly attribute the importance of features, especially when a decision-making process involves feature interactions.
arXiv Detail & Related papers (2023-10-27T21:16:28Z) - On Explainability in AI-Solutions: A Cross-Domain Survey [4.394025678691688]
In automatically deriving a system model, AI algorithms learn relations in data that are not detectable for humans.
The more complex a model, the more difficult it is for a human to understand the reasoning for the decisions.
This work provides an extensive survey of literature on this topic, which, to a large part, consists of other surveys.
arXiv Detail & Related papers (2022-10-11T06:21:47Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - A Turing Test for Transparency [0.0]
A central goal of explainable artificial intelligence (XAI) is to improve the trust relationship in human-AI interaction.
Recent empirical evidence shows that explanations can have the opposite effect.
This effect challenges the very goal of XAI and implies that responsible usage of transparent AI methods has to consider the ability of humans to distinguish machine generated from human explanations.
arXiv Detail & Related papers (2021-06-21T20:09:40Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and
Execution [97.50813120600026]
Spatial-temporal reasoning is a challenging task in Artificial Intelligence (AI)
Recent works have focused on an abstract reasoning task of this kind -- Raven's Progressive Matrices ( RPM)
We propose a neuro-symbolic Probabilistic Abduction and Execution learner (PrAE) learner.
arXiv Detail & Related papers (2021-03-26T02:42:18Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
Principal component analysis (PCA) is a widely used dimension reduction technique in machine learning and statistics.
Various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis.
We present thresholding as a provably accurate, time, approximation algorithm for the SPCA problem.
arXiv Detail & Related papers (2020-06-23T04:25:36Z) - Deceptive AI Explanations: Creation and Detection [3.197020142231916]
We investigate how AI models can be used to create and detect deceptive explanations.
As an empirical evaluation, we focus on text classification and alter the explanations generated by GradCAM.
We evaluate the effect of deceptive explanations on users in an experiment with 200 participants.
arXiv Detail & Related papers (2020-01-21T16:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.