MixRT: Mixed Neural Representations For Real-Time NeRF Rendering
- URL: http://arxiv.org/abs/2312.11841v4
- Date: Mon, 22 Jan 2024 14:59:20 GMT
- Title: MixRT: Mixed Neural Representations For Real-Time NeRF Rendering
- Authors: Chaojian Li, Bichen Wu, Peter Vajda, Yingyan (Celine) Lin
- Abstract summary: We propose MixRT, a novel NeRF representation that includes a low-quality mesh, a view-dependent displacement map, and a compressed NeRF model.
This design effectively harnesses the capabilities of existing graphics hardware, thus enabling real-time NeRF rendering on edge devices.
- Score: 24.040636076067393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Field (NeRF) has emerged as a leading technique for novel
view synthesis, owing to its impressive photorealistic reconstruction and
rendering capability. Nevertheless, achieving real-time NeRF rendering in
large-scale scenes has presented challenges, often leading to the adoption of
either intricate baked mesh representations with a substantial number of
triangles or resource-intensive ray marching in baked representations. We
challenge these conventions, observing that high-quality geometry, represented
by meshes with substantial triangles, is not necessary for achieving
photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF
representation that includes a low-quality mesh, a view-dependent displacement
map, and a compressed NeRF model. This design effectively harnesses the
capabilities of existing graphics hardware, thus enabling real-time NeRF
rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering
framework, our proposed MixRT attains real-time rendering speeds on edge
devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop),
better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360
datasets), and a smaller storage size (less than 80% compared to
state-of-the-art methods).
Related papers
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm [57.73868344064043]
We propose NeRFLiX, a general NeRF-agnostic restorer paradigm that learns a degradation-driven inter-viewpoint mixer.
We also present NeRFLiX++ with a stronger two-stage NeRF degradation simulator and a faster inter-viewpoint mixer.
NeRFLiX++ is capable of restoring photo-realistic ultra-high-resolution outputs from noisy low-resolution NeRF-rendered views.
arXiv Detail & Related papers (2023-06-10T09:19:19Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
arXiv Detail & Related papers (2023-04-20T17:59:52Z) - SurfelNeRF: Neural Surfel Radiance Fields for Online Photorealistic
Reconstruction of Indoor Scenes [17.711755550841385]
SLAM-based methods can reconstruct 3D scene geometry progressively in real time but can not render photorealistic results.
NeRF-based methods produce promising novel view synthesis results, their long offline optimization time and lack of geometric constraints pose challenges to efficiently handling online input.
We introduce SurfelNeRF, a variant of neural radiance field which employs a flexible and scalable neural surfel representation to store geometric attributes and extracted appearance features from input images.
arXiv Detail & Related papers (2023-04-18T13:11:49Z) - Re-ReND: Real-time Rendering of NeRFs across Devices [56.081995086924216]
Re-ReND is designed to achieve real-time performance by converting the NeRF into a representation that can be efficiently processed by standard graphics pipelines.
We find that Re-ReND can achieve over a 2.6-fold increase in rendering speed versus the state-of-the-art without perceptible losses in quality.
arXiv Detail & Related papers (2023-03-15T15:59:41Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
We propose NeRFusion, a method that combines the advantages of NeRF and TSDF-based fusion techniques to achieve efficient large-scale reconstruction and photo-realistic rendering.
We demonstrate that NeRFusion achieves state-of-the-art quality on both large-scale indoor and small-scale object scenes, with substantially faster reconstruction than NeRF and other recent methods.
arXiv Detail & Related papers (2022-03-21T18:56:35Z) - Baking Neural Radiance Fields for Real-Time View Synthesis [41.07052395570522]
We present a method to train a NeRF, then precompute and store (i.e. "bake") it as a novel representation called a Sparse Neural Radiance Grid (SNeRG)
The resulting scene representation retains NeRF's ability to render fine geometric details and view-dependent appearance, is compact, and can be rendered in real-time.
arXiv Detail & Related papers (2021-03-26T17:59:52Z) - FastNeRF: High-Fidelity Neural Rendering at 200FPS [17.722927021159393]
We propose FastNeRF, a system capable of rendering high fidelity images at 200Hz on a high-end consumer GPU.
The proposed method is 3000 times faster than the original NeRF algorithm and at least an order of magnitude faster than existing work on accelerating NeRF.
arXiv Detail & Related papers (2021-03-18T17:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.