論文の概要: A Revisit of Fake News Dataset with Augmented Fact-checking by ChatGPT
- arxiv url: http://arxiv.org/abs/2312.11870v1
- Date: Tue, 19 Dec 2023 05:46:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 16:46:15.810572
- Title: A Revisit of Fake News Dataset with Augmented Fact-checking by ChatGPT
- Title(参考訳): ChatGPTによるFact-checkによるフェイクニュースデータセットの再検討
- Authors: Zizhong Li, Haopeng Zhang, Jiawei Zhang
- Abstract要約: 既存の偽ニュース検出データセットは、人間のジャーナリストから提供されています。
本稿では,人間のジャーナリストが検証した既存の偽ニュースデータセットを再検討し,大規模言語モデルによるファクトチェックの強化を行った。
- 参考スコア(独自算出の注目度): 8.363702038073814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of fake news has emerged as a critical issue in recent
years, requiring significant efforts to detect it. However, the existing fake
news detection datasets are sourced from human journalists, which are likely to
have inherent bias limitations due to the highly subjective nature of this
task. In this paper, we revisit the existing fake news dataset verified by
human journalists with augmented fact-checking by large language models
(ChatGPT), and we name the augmented fake news dataset ChatGPT-FC. We
quantitatively analyze the distinctions and resemblances between human
journalists and LLM in assessing news subject credibility, news creator
credibility, time-sensitive, and political framing. Our findings highlight
LLM's potential to serve as a preliminary screening method, offering a
promising avenue to mitigate the inherent biases of human journalists and
enhance fake news detection.
- Abstract(参考訳): 近年、フェイクニュースの拡散が重要な問題として現れており、それを検出するためにかなりの努力を必要としている。
しかし、既存の偽ニュース検出データセットは、人間のジャーナリストから引用されており、このタスクの極めて主観的な性質から、固有のバイアス制限がある可能性が高い。
本稿では,大規模言語モデル(ChatGPT)によるファクトチェックを付加した既存の偽ニュースデータセットを再検討し,偽ニュースデータセットChatGPT-FCと命名する。
我々は,人間ジャーナリストとllmの区別と類似性を定量的に分析し,ニュース記事の信頼性,ニュースクリエーターの信頼性,時間感応性,政治フレーミングを評価する。
本稿は, LLMが予備スクリーニング手法として機能する可能性を強調し, ジャーナリストの偏見を緩和し, 偽ニュースの検出を向上する有望な手段を提供する。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
本稿ではブラジルポルトガル語における偽ニュースの検出に関する総合的研究について述べる。
本稿では、TF-IDFやWord2Vecといった自然言語処理技術を活用する機械学習ベースのアプローチを提案する。
ユーザフレンドリーなWebプラットフォームである fakenewsbr.com を開発し,ニュース記事の妥当性の検証を容易にする。
論文 参考訳(メタデータ) (2023-09-20T04:10:03Z) - Fake News Detectors are Biased against Texts Generated by Large Language
Models [39.36284616311687]
フェイクニュースの拡散は、信頼を弱め、社会への脅威を訴える重要な課題として浮上している。
本稿では,人間の書き起こしとLLM生成の両方の誤情報を含むシナリオにおいて,偽ニュース検知器を評価するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-09-15T18:04:40Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Stance Detection with BERT Embeddings for Credibility Analysis of
Information on Social Media [1.7616042687330642]
本稿では,記事の内容とともに,その特徴の1つとして姿勢を用いた偽ニュースを検出するモデルを提案する。
本研究は,自動的特徴抽出とテキストの関連性でコンテンツを解釈する。
実世界のデータセットで行った実験は、我々のモデルが以前の研究より優れており、95.32%の精度で偽ニュースの検出を可能にすることを示している。
論文 参考訳(メタデータ) (2021-05-21T10:46:43Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Early Detection of Fake News by Utilizing the Credibility of News,
Publishers, and Users Based on Weakly Supervised Learning [23.96230360460216]
本稿では,ニュースコンテンツとパブリッシャーとユーザの関係を結合した構造対応型マルチヘッド・アテンション・ネットワーク(SMAN)を提案する。
SMANは、最新のモデルよりもはるかに高速である91%以上の精度で4時間で偽のニュースを検出することができます。
論文 参考訳(メタデータ) (2020-12-08T05:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。