論文の概要: Short-Term Multi-Horizon Line Loss Rate Forecasting of a Distribution
Network Using Attention-GCN-LSTM
- arxiv url: http://arxiv.org/abs/2312.11898v1
- Date: Tue, 19 Dec 2023 06:47:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 16:34:36.384763
- Title: Short-Term Multi-Horizon Line Loss Rate Forecasting of a Distribution
Network Using Attention-GCN-LSTM
- Title(参考訳): Attention-GCN-LSTM を用いた配電網の短期マルチ水平線損失率予測
- Authors: Jie Liu, Yijia Cao, Yong Li, Yixiu Guo, and Wei Deng
- Abstract要約: 本稿では,GCN(Graph Convolutional Networks),LSTM(Long Short-Term Memory)と3レベルアテンション機構を組み合わせた新しい手法であるAttention-GCN-LSTMを提案する。
本モデルにより,複数の水平線を横断する線損失率の正確な予測が可能となる。
- 参考スコア(独自算出の注目度): 9.460123100630158
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurately predicting line loss rates is vital for effective line loss
management in distribution networks, especially over short-term multi-horizons
ranging from one hour to one week. In this study, we propose
Attention-GCN-LSTM, a novel method that combines Graph Convolutional Networks
(GCN), Long Short-Term Memory (LSTM), and a three-level attention mechanism to
address this challenge. By capturing spatial and temporal dependencies, our
model enables accurate forecasting of line loss rates across multiple horizons.
Through comprehensive evaluation using real-world data from 10KV feeders, our
Attention-GCN-LSTM model consistently outperforms existing algorithms,
exhibiting superior performance in terms of prediction accuracy and
multi-horizon forecasting. This model holds significant promise for enhancing
line loss management in distribution networks.
- Abstract(参考訳): 回線損失率を正確に予測することは、配電網、特に1時間から1週間の短期的マルチホリゾンの回線損失管理に不可欠である。
本研究では,グラフ畳み込みネットワーク(GCN),Long Short-Term Memory(LSTM)を組み合わせた新しい手法であるAttention-GCN-LSTMを提案する。
空間的および時間的依存性を捉えることにより,複数の地平線を横断する線損率を正確に予測することができる。
10kvフィード装置の実世界データを用いた包括的評価により,本モデルは既存のアルゴリズムを一貫して上回り,予測精度とマルチホライゾン予測の面で優れた性能を示す。
このモデルは,配電網におけるライン損失管理の強化に大きく貢献する。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Approximate attention with MLP: a pruning strategy for attention-based model in multivariate time series forecasting [21.7023262988233]
この研究は、自己注意ネットワークを理解するための新しい方法を提案する。
注意機構全体が劣化する空間ネットワークに還元可能であることを示す。
論文 参考訳(メタデータ) (2024-10-31T15:23:34Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - 1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index
Forecasting [6.05458608266581]
本研究では,多段階株価指数予測のためのLSTMネットワークに1D CapsNetを統合する可能性を検討する。
この目的のために、1D CapsNetを用いて高レベルのカプセルを生成するハイブリッド1D-CapsNet-LSTMモデルが導入された。
提案した1D-CapsNet-LSTMモデルは、ベースラインモデルを2つの重要な側面で一貫して上回っている。
論文 参考訳(メタデータ) (2023-10-03T14:33:34Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
我々はネットワーク埋め込みのための微分可能な量子化法であるd-SNEQを開発した。
d-SNEQは、学習された量子化符号にリッチな高次情報を与えるためにランク損失を組み込む。
トレーニング済みの埋め込みのサイズを大幅に圧縮できるため、ストレージのフットプリントが減少し、検索速度が向上する。
論文 参考訳(メタデータ) (2021-08-20T11:53:05Z) - Short-Term Electricity Price Forecasting based on Graph Convolution
Network and Attention Mechanism [5.331757100806177]
本稿では、スペクトルグラフ畳み込みネットワーク(GCN)を調整し、短期LMP予測の精度を大幅に向上させる。
3分岐ネットワーク構造はLMPの構成と一致するように設計されている。
PJMによるIEEE-118テストシステムと実世界のデータに基づくケーススタディにより、提案モデルが既存の予測モデルよりも精度で優れていることが検証された。
論文 参考訳(メタデータ) (2021-07-26T15:44:07Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。