論文の概要: Parameterized Decision-making with Multi-modal Perception for Autonomous
Driving
- arxiv url: http://arxiv.org/abs/2312.11935v1
- Date: Tue, 19 Dec 2023 08:27:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 16:29:35.682397
- Title: Parameterized Decision-making with Multi-modal Perception for Autonomous
Driving
- Title(参考訳): 自律運転における多モード知覚を用いたパラメータ決定
- Authors: Yuyang Xia, Shuncheng Liu, Quanlin Yu, Liwei Deng, You Zhang, Han Su
and Kai Zheng
- Abstract要約: AUTOと呼ばれる深層強化学習に基づくマルチモーダル認識を用いたパラメータ化意思決定フレームワークを提案する。
ハイブリッド報酬関数は、安全、交通効率、乗客の快適性、および最適な行動を生成するためのフレームワークを導く影響を考慮に入れている。
- 参考スコア(独自算出の注目度): 12.21578713219778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving is an emerging technology that has advanced rapidly over
the last decade. Modern transportation is expected to benefit greatly from a
wise decision-making framework of autonomous vehicles, including the
improvement of mobility and the minimization of risks and travel time. However,
existing methods either ignore the complexity of environments only fitting
straight roads, or ignore the impact on surrounding vehicles during
optimization phases, leading to weak environmental adaptability and incomplete
optimization objectives. To address these limitations, we propose a
parameterized decision-making framework with multi-modal perception based on
deep reinforcement learning, called AUTO. We conduct a comprehensive perception
to capture the state features of various traffic participants around the
autonomous vehicle, based on which we design a graph-based model to learn a
state representation of the multi-modal semantic features. To distinguish
between lane-following and lane-changing, we decompose an action of the
autonomous vehicle into a parameterized action structure that first decides
whether to change lanes and then computes an exact action to execute. A hybrid
reward function takes into account aspects of safety, traffic efficiency,
passenger comfort, and impact to guide the framework to generate optimal
actions. In addition, we design a regularization term and a multi-worker
paradigm to enhance the training. Extensive experiments offer evidence that
AUTO can advance state-of-the-art in terms of both macroscopic and microscopic
effectiveness.
- Abstract(参考訳): 自動運転は、この10年間で急速に進歩した新興技術だ。
現代の交通は、移動性の向上やリスクの最小化、走行時間の短縮など、自動運転車の賢明な意思決定の枠組みから大きな恩恵を受けると予想されている。
しかし、既存の手法は、直線道路にのみ適合する環境の複雑さを無視するか、最適化段階における周囲の車両への影響を無視し、環境適応性の弱さと不完全な最適化目標をもたらす。
これらの制約に対処するため、AUTOと呼ばれる深層強化学習に基づくマルチモーダル認識を用いたパラメータ化意思決定フレームワークを提案する。
我々は、多モーダルなセマンティックな特徴の状態表現を学習するためのグラフベースモデルの設計に基づいて、自動運転車の周囲の様々な交通参加者の状況特徴を包括的に把握する。
車線追跡と車線変更を区別するため,まず車線変更を判断し,正確な動作を計算するパラメータ化動作構造に自動運転車の動作を分解する。
ハイブリッド報酬関数は、安全、交通効率、乗客の快適性、および最適な行動を生成するためのフレームワークを導く影響を考慮に入れている。
さらに、トレーニングを強化するために、正規化用語とマルチワーカーパラダイムを設計する。
大規模な実験は、AUTOがマクロ的効果と顕微鏡的効果の両面で最先端を推し進めることができることを示す証拠である。
関連論文リスト
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
本稿ではトランスフォーマーと強化学習アルゴリズムに基づくCAV意思決定アーキテクチャを提案する。
学習可能なポリシートークンは、多車連携ポリシーの学習媒体として使用される。
我々のモデルは交通シナリオにおける車両の全ての状態情報をうまく活用することができる。
論文 参考訳(メタデータ) (2024-09-23T15:16:35Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Autonomous Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesデータセットで行った実験は、DiFSDの優れた計画性能と優れた効率を示す。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Looking for a better fit? An Incremental Learning Multimodal Object
Referencing Framework adapting to Individual Drivers [0.0]
自動車産業の急速な進歩により、タッチベースや音声コマンドシステムといった従来の車両のインタラクション方法は、車両外の物体を参照するなど、幅広い非運転関連のタスクには不十分である。
textitIcRegressは、オブジェクトの駆動と参照という2つのタスクに携わるドライバーの振る舞いや特徴に適応する、新しい回帰に基づく漸進的学習手法である。
論文 参考訳(メタデータ) (2024-01-29T12:48:56Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
本稿では,他のドライバの動作から不確実性が生ずる移動トラフィックにマージする複雑なタスクに焦点を当てる。
我々はこの問題を部分的に観測可能なマルコフ決定プロセス(POMDP)とみなし、モンテカルロ木探索でオンラインに解決する。
POMDPの解決策は、接近する車に道を譲る、前方の車から安全な距離を維持する、あるいは交通に合流するといった、高いレベルの運転操作を行う政策である。
論文 参考訳(メタデータ) (2023-03-29T16:12:45Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - RLPG: Reinforcement Learning Approach for Dynamic Intra-Platoon Gap
Adaptation for Highway On-Ramp Merging [14.540226579203207]
小隊は、非常に近い距離で一緒に移動する車両のグループを指す。
近年の研究では、高規格道路と高架道路の合流時の交通流に対する極小小小高架区間の影響が明らかにされている。
本稿では,各小隊員の小隊内ギャップを適応的に調整し,交通流を最大化する新しい補強学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-07T07:33:54Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
本研究では,運転行動に対して高品質で伝達可能で適応可能な予測を生成する階層型フレームワークであるHATNを提案する。
我々は,交差点における実交通データの軌跡予測と,インターActionデータセットからのラウンドアバウンドのタスクにおいて,我々のアルゴリズムを実証する。
論文 参考訳(メタデータ) (2022-02-10T16:46:24Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。