論文の概要: MetaFollower: Adaptable Personalized Autonomous Car Following
- arxiv url: http://arxiv.org/abs/2406.16978v1
- Date: Sun, 23 Jun 2024 15:30:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 19:00:25.393884
- Title: MetaFollower: Adaptable Personalized Autonomous Car Following
- Title(参考訳): MetaFollower: パーソナライズされた自律走行車
- Authors: Xianda Chen, Kehua Chen, Meixin Zhu, Hao, Yang, Shaojie Shen, Xuesong Wang, Yinhai Wang,
- Abstract要約: 適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
- 参考スコア(独自算出の注目度): 63.90050686330677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Car-following (CF) modeling, a fundamental component in microscopic traffic simulation, has attracted increasing interest of researchers in the past decades. In this study, we propose an adaptable personalized car-following framework -MetaFollower, by leveraging the power of meta-learning. Specifically, we first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events. Afterward, the pre-trained model can be fine-tuned on new drivers with only a few CF trajectories to achieve personalized CF adaptation. We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability. Unlike conventional adaptive cruise control (ACC) systems that rely on predefined settings and constant parameters without considering heterogeneous driving characteristics, MetaFollower can accurately capture and simulate the intricate dynamics of car-following behavior while considering the unique driving styles of individual drivers. We demonstrate the versatility and adaptability of MetaFollower by showcasing its ability to adapt to new drivers with limited training data quickly. To evaluate the performance of MetaFollower, we conduct rigorous experiments comparing it with both data-driven and physics-based models. The results reveal that our proposed framework outperforms baseline models in predicting car-following behavior with higher accuracy and safety. To the best of our knowledge, this is the first car-following model aiming to achieve fast adaptation by considering both driver and temporal heterogeneity based on meta-learning.
- Abstract(参考訳): 微視的交通シミュレーションの基本的な構成要素である自動車追尾(CF)モデリングは、過去数十年間、研究者の関心を集めてきた。
本研究では,メタラーニングの力を活用した,適応型パーソナライズされた自動車追従フレームワーク -MetaFollowerを提案する。
具体的には,まずモデル非依存メタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
その後、事前訓練されたモデルは、CF適応をパーソナライズするために、数個のCF軌道を持つ新しいドライバで微調整することができる。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
異種運転特性を考慮せずに事前定義された設定と定数パラメータに依存する従来の適応型クルーズ制御(ACC)システムとは異なり、MetaFollowerは個々の運転者の独特の運転スタイルを考慮しつつ、自動車追従動作の複雑なダイナミクスを正確に捉え、シミュレートすることができる。
我々は,MetaFollowerの汎用性と適応性を,訓練データに制限のある新しいドライバに迅速に適応できることを示して示す。
MetaFollowerの性能を評価するため,データ駆動モデルと物理モデルを比較した厳密な実験を行った。
その結果,提案手法は,車追従挙動を高精度かつ安全に予測する上で,ベースラインモデルよりも優れていることがわかった。
我々の知る限り、これはメタラーニングに基づくドライバーと時間的異質性の両方を考慮し、迅速な適応を目指す最初の自動車追従モデルである。
関連論文リスト
- Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
自動運転技術の継続的な進化には、多様なダイナミックな交通環境に適応できる自動車追従モデルが必要である。
従来の学習ベースのモデルは、連続的な学習能力の欠如により、目に見えないトラフィックパターンに遭遇する際のパフォーマンス低下に悩まされることが多い。
本稿では,この制限に対処する連続学習に基づく新しい車追従モデルを提案する。
論文 参考訳(メタデータ) (2024-07-17T06:32:52Z) - GenFollower: Enhancing Car-Following Prediction with Large Language Models [11.847589952558566]
我々は、これらの課題に対処するために、大規模言語モデル(LLM)を活用する新しいゼロショットプロンプトアプローチであるGenFollowerを提案する。
我々は,車追従動作を言語モデリング問題として再編成し,不均一な入力をLLMのための構造化プロンプトに統合する。
オープンデータセットの実験は、GenFollowerの優れたパフォーマンスと解釈可能な洞察を提供する能力を示している。
論文 参考訳(メタデータ) (2024-07-08T04:54:42Z) - EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems [28.263763430300504]
本研究では,データ駆動型自動車追従モデルを提案する。
本モデルは,運転者の社会的嗜好を考慮に入れたACCシステムの開発に有用な知見を提供する。
論文 参考訳(メタデータ) (2024-06-23T15:04:07Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
我々は行動認識軌道予測モデル(BAT)を考案した。
我々のモデルは行動認識、相互作用認識、優先度認識、位置認識モジュールから構成される。
次世代シミュレーション(NGSIM)、ハイウェイドローン(HighD)、ラウンドアバウンドドローン(RounD)、マカオコネクテッド自律運転(MoCAD)データセットにおけるBATの性能を評価する。
論文 参考訳(メタデータ) (2023-12-11T13:27:51Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RLはメタ強化学習(Meta-RL)アルゴリズムである。
既存のMeta-RLメソッドは豊富なメタ学習データを必要とし、ロボット工学などの設定で適用性を制限する。
実験の結果,PACOH-RLはモデルベースRLおよびモデルベースMeta-RLベースラインよりも高い性能を示し,新しい動的条件に適応することがわかった。
論文 参考訳(メタデータ) (2023-11-13T18:51:57Z) - EnsembleFollower: A Hybrid Car-Following Framework Based On
Reinforcement Learning and Hierarchical Planning [22.63087292154406]
先進的な人間的な車追従を実現するための階層的計画枠組みを提案する。
EnsembleFollowerフレームワークには、複数の低レベルの自動車追従モデルを司法的に管理する、高レベルの強化学習ベースのエージェントが含まれている。
提案手法は,HighDデータセットから実世界の運転データに基づいて評価する。
論文 参考訳(メタデータ) (2023-08-30T12:55:02Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。