Trusted Execution Environment for Decentralized Process Mining
- URL: http://arxiv.org/abs/2312.12105v3
- Date: Tue, 9 Apr 2024 10:42:25 GMT
- Title: Trusted Execution Environment for Decentralized Process Mining
- Authors: Valerio Goretti, Davide Basile, Luca Barbaro, Claudio Di Ciccio,
- Abstract summary: We introduce CONFINE, a novel approach that unlocks process mining on multiple actors' process event data.
We show the feasibility of our solution by showcasing its application to a healthcare scenario.
- Score: 1.6686882054452727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inter-organizational business processes involve multiple independent organizations collaborating to achieve mutual interests. Process mining techniques have the potential to allow these organizations to enhance operational efficiency, improve performance, and deepen the understanding of their business based on the recorded process event data. However, inter-organizational process mining faces substantial challenges, including topical secrecy concerns: The involved organizations may not be willing to expose their own data to run mining algorithms jointly with their counterparts or third parties. In this paper, we introduce CONFINE, a novel approach that unlocks process mining on multiple actors' process event data while safeguarding the secrecy and integrity of the original records in an inter-organizational business setting. To ensure that the phases of the presented interaction protocol are secure and that the processed information is hidden from involved and external actors alike, our approach resorts to a decentralized architecture comprised of trusted applications running in Trusted Execution Environments (TEEs). We show the feasibility of our solution by showcasing its application to a healthcare scenario and evaluating our implementation in terms of memory usage and scalability on real-world event logs.
Related papers
- Extending predictive process monitoring for collaborative processes [0.9208007322096533]
Predictive process monitoring is based on exploiting execution data from past instances to predict the execution of current cases.
It is possible to make predictions on the next activity and remaining time, among others, to anticipate possible deviations, violations, and delays in the processes to take preventive measures.
In this work, we propose an extension for collaborative processes of traditional process prediction, considering particularities of this type of process.
arXiv Detail & Related papers (2024-09-13T21:56:23Z) - Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives [40.62773366902451]
This paper advocates a specific viewpoint on the field of process mining.
We first summarize the framework of process mining, common industrial applications, and the latest advances combined with artificial intelligence.
This particular perspective aims to revolutionize process mining by leveraging artificial intelligence to offer sophisticated solutions for complex, multi-organizational data analysis.
arXiv Detail & Related papers (2024-07-15T23:30:34Z) - Extending Business Process Management for Regulatory Transparency [0.0]
We bridge the gap between business processes and application systems by providing a plug-in extension to BPMN featuring regulatory transparency information.
We leverage process mining techniques to discover and analyze personal data flows in business processes.
arXiv Detail & Related papers (2024-06-14T12:08:34Z) - Extracting Process-Aware Decision Models from Object-Centric Process
Data [54.04724730771216]
This paper proposes the first object-centric decision-mining algorithm called Integrated Object-centric Decision Discovery Algorithm (IODDA)
IODDA is able to discover how a decision is structured as well as how a decision is made.
arXiv Detail & Related papers (2024-01-26T13:27:35Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
In flexible job shop scheduling problem (FJSP), operations can be processed on multiple machines, leading to intricate relationships between operations and machines.
Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP.
This paper presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making.
arXiv Detail & Related papers (2023-05-09T01:35:48Z) - Cooperative Multi-Agent Actor-Critic for Privacy-Preserving Load
Scheduling in a Residential Microgrid [71.17179010567123]
We propose a privacy-preserving multi-agent actor-critic framework where the decentralized actors are trained with distributed critics.
The proposed framework can preserve the privacy of the households while simultaneously learn the multi-agent credit assignment mechanism implicitly.
arXiv Detail & Related papers (2021-10-06T14:05:26Z) - Trustworthy Artificial Intelligence and Process Mining: Challenges and
Opportunities [0.8602553195689513]
We show that process mining can provide a useful framework for gaining fact-based visibility to AI compliance process execution.
We provide for an automated approach to analyze, remediate and monitor uncertainty in AI regulatory compliance processes.
arXiv Detail & Related papers (2021-10-06T12:50:47Z) - Process Comparison Using Object-Centric Process Cubes [69.68068088508505]
In real-life business processes, different behaviors exist that make the overall process too complex to interpret.
Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes.
We propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs.
arXiv Detail & Related papers (2021-03-12T10:08:28Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z) - Discovering Business Area Effects to Process Mining Analysis Using
Clustering and Influence Analysis [0.0]
We present a novel methodology for discovering business areas that have a significant effect on the process execution details.
Our method uses clustering to group similar cases based on process flow characteristics.
We also present an example analysis based on publicly available real-life purchase order process data.
arXiv Detail & Related papers (2020-03-18T11:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.