SoftCTM: Cell detection by soft instance segmentation and consideration
of cell-tissue interaction
- URL: http://arxiv.org/abs/2312.12151v1
- Date: Tue, 19 Dec 2023 13:33:59 GMT
- Title: SoftCTM: Cell detection by soft instance segmentation and consideration
of cell-tissue interaction
- Authors: Lydia A. Schoenpflug and Viktor H. Koelzer
- Abstract summary: We investigate the impact of ground truth formats on the models performance.
Cell-tissue interactions are considered by providing tissue segmentation predictions.
We find that a "soft", probability-map instance segmentation ground truth leads to best model performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and classifying cells in histopathology H\&E stained whole-slide
images is a core task in computational pathology, as it provides valuable
insight into the tumor microenvironment. In this work we investigate the impact
of ground truth formats on the models performance. Additionally, cell-tissue
interactions are considered by providing tissue segmentation predictions as
input to the cell detection model. We find that a "soft", probability-map
instance segmentation ground truth leads to best model performance. Combined
with cell-tissue interaction and test-time augmentation our Soft
Cell-Tissue-Model (SoftCTM) achieves 0.7172 mean F1-Score on the Overlapped
Cell On Tissue (OCELOT) test set, achieving the third best overall score in the
OCELOT 2023 Challenge. The source code for our approach is made publicly
available at https://github.com/lely475/ocelot23algo.
Related papers
- CellPilot [3.2096430458509317]
This work introduces CellPilot, a framework that bridges the gap between automatic and interactive segmentation.
Our model was trained on over 675,000 masks of nine diverse cell and gland segmentation datasets, spanning 16 organs.
We make the model and a graphical user interface designed to assist practitioners in creating large-scale annotated datasets available as open-source.
arXiv Detail & Related papers (2024-11-23T10:31:10Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Pushing the limits of cell segmentation models for imaging mass
cytometry [0.6003166991970345]
This paper explores the effects of imperfect labels on learning-based segmentation models.
It evaluates the generalisability of these models to different tissue types.
arXiv Detail & Related papers (2024-02-06T22:32:05Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
We introduce MixMIL, a framework integrating Generalized Linear Mixed Models (GLMM) and Multiple Instance Learning (MIL)
Our empirical results reveal that MixMIL outperforms existing MIL models in single-cell datasets.
arXiv Detail & Related papers (2023-11-04T16:42:42Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
We develop an automatic cell classification pipeline to label microscopy images.
We then train a classification model based on the category labels.
We deploy two types of segmentation models to segment cells with roundish and irregular shapes.
arXiv Detail & Related papers (2023-10-22T08:11:08Z) - OCELOT: Overlapped Cell on Tissue Dataset for Histopathology [13.691924123273004]
We release OCELOT, a dataset dedicated to the study of cell-tissue relationships for cell detection in histopathology.
We propose multi-task learning approaches that benefit from learning both cell and tissue tasks simultaneously.
On the OCELOT test set in particular, we show up to 6.79 improvement in F1-score.
arXiv Detail & Related papers (2023-03-23T08:57:11Z) - Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation [0.0]
Deep learning (DL) shows powerful potential in cell segmentation tasks, but suffers from poor generalization.
In this paper, we introduce a novel semi-supervised cell segmentation method called Multi-Microscopic-view Cell semi-supervised (MMCS)
MMCS can train cell segmentation models utilizing less labeled multi-posture cell images with different microscopy well.
It achieves an F1-score of 0.8239 and the running time for all cases is within the time tolerance.
arXiv Detail & Related papers (2023-03-21T08:08:13Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
We propose a novel cell instance segmentation approach based on the well-known U-Net architecture.
To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model.
The obtained results suggest a performance boost over traditional U-Net architectures.
arXiv Detail & Related papers (2021-06-10T15:54:38Z) - Stretchable Cells Help DARTS Search Better [70.52254306274092]
Differentiable neural architecture search (DARTS) has gained much success in discovering flexible and diverse cell types.
Current DARTS methods are prone to wide and shallow cells, and this topology collapse induces sub-optimal searched cells.
In this paper, we endowing the cells with explicit stretchability, so the search can be directly implemented on our stretchable cells.
arXiv Detail & Related papers (2020-11-18T14:15:51Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
We propose a two-step post-processing procedure, Split and Expand, to improve the conversion of segmentation maps to instances.
In the Split step, we split clumps of cells from the segmentation map into individual cell instances with the guidance of cell-center predictions.
In the Expand step, we find missing small cells using the cell-center predictions.
arXiv Detail & Related papers (2020-07-21T14:05:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.