CellPilot
- URL: http://arxiv.org/abs/2411.15514v1
- Date: Sat, 23 Nov 2024 10:31:10 GMT
- Title: CellPilot
- Authors: Philipp Endres, Valentin Koch, Julia A. Schnabel, Carsten Marr,
- Abstract summary: This work introduces CellPilot, a framework that bridges the gap between automatic and interactive segmentation.
Our model was trained on over 675,000 masks of nine diverse cell and gland segmentation datasets, spanning 16 organs.
We make the model and a graphical user interface designed to assist practitioners in creating large-scale annotated datasets available as open-source.
- Score: 3.2096430458509317
- License:
- Abstract: Histopathology, the microscopic study of diseased tissue, is increasingly digitized, enabling improved visualization and streamlined workflows. An important task in histopathology is the segmentation of cells and glands, essential for determining shape and frequencies that can serve as indicators of disease. Deep learning tools are widely used in histopathology. However, variability in tissue appearance and cell morphology presents challenges for achieving reliable segmentation, often requiring manual correction to improve accuracy. This work introduces CellPilot, a framework that bridges the gap between automatic and interactive segmentation by providing initial automatic segmentation as well as guided interactive refinement. Our model was trained on over 675,000 masks of nine diverse cell and gland segmentation datasets, spanning 16 organs. CellPilot demonstrates superior performance compared to other interactive tools on three held-out histopathological datasets while enabling automatic segmentation. We make the model and a graphical user interface designed to assist practitioners in creating large-scale annotated datasets available as open-source, fostering the development of more robust and generalized diagnostic models.
Related papers
- Open Source Infrastructure for Automatic Cell Segmentation [0.0]
This paper presents open-source infrastructure, utilizing the UNet model, a deep-learning architecture noted for its effectiveness in image segmentation tasks.
The resulting tool offers a convenient and user-friendly interface, reducing the barrier to entry for cell segmentation while maintaining high accuracy.
arXiv Detail & Related papers (2024-09-12T15:56:17Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
arXiv Detail & Related papers (2024-07-14T04:41:16Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - A novel framework employing deep multi-attention channels network for
the autonomous detection of metastasizing cells through fluorescence
microscopy [0.20999222360659603]
We developed a computational framework that can distinguish between normal and metastasizing human cells.
The method relies on fluorescence microscopy images showing the spatial organization of actin and vimentin filaments in normal and metastasizing single cells.
arXiv Detail & Related papers (2023-09-02T11:20:10Z) - OCELOT: Overlapped Cell on Tissue Dataset for Histopathology [13.691924123273004]
We release OCELOT, a dataset dedicated to the study of cell-tissue relationships for cell detection in histopathology.
We propose multi-task learning approaches that benefit from learning both cell and tissue tasks simultaneously.
On the OCELOT test set in particular, we show up to 6.79 improvement in F1-score.
arXiv Detail & Related papers (2023-03-23T08:57:11Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Robust Interactive Semantic Segmentation of Pathology Images with
Minimal User Input [1.5328185694137677]
We propose an efficient interactive segmentation network that requires minimum input from the user to accurately annotate different tissue types in the histology image.
We show that not only does our proposed method speed up the interactive annotation process, it can also outperform the existing automatic and interactive region segmentation models.
arXiv Detail & Related papers (2021-08-30T16:43:03Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.