Teeth Localization and Lesion Segmentation in CBCT Images using
SpatialConfiguration-Net and U-Net
- URL: http://arxiv.org/abs/2312.12189v1
- Date: Tue, 19 Dec 2023 14:23:47 GMT
- Title: Teeth Localization and Lesion Segmentation in CBCT Images using
SpatialConfiguration-Net and U-Net
- Authors: Arnela Hadzic and Barbara Kirnbauer and Darko Stern and Martin
Urschler
- Abstract summary: The localization of teeth and segmentation of periapical lesions are crucial tasks for clinical diagnosis and treatment planning.
In this study, we propose a deep learning-based method utilizing two convolutional neural networks.
The method achieves a 97.3% accuracy for teeth localization, along with a promising sensitivity and specificity of 0.97 and 0.88, respectively, for subsequent lesion detection.
- Score: 0.4915744683251149
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The localization of teeth and segmentation of periapical lesions in cone-beam
computed tomography (CBCT) images are crucial tasks for clinical diagnosis and
treatment planning, which are often time-consuming and require a high level of
expertise. However, automating these tasks is challenging due to variations in
shape, size, and orientation of lesions, as well as similar topologies among
teeth. Moreover, the small volumes occupied by lesions in CBCT images pose a
class imbalance problem that needs to be addressed. In this study, we propose a
deep learning-based method utilizing two convolutional neural networks: the
SpatialConfiguration-Net (SCN) and a modified version of the U-Net. The SCN
accurately predicts the coordinates of all teeth present in an image, enabling
precise cropping of teeth volumes that are then fed into the U-Net which
detects lesions via segmentation. To address class imbalance, we compare the
performance of three reweighting loss functions. After evaluation on 144 CBCT
images, our method achieves a 97.3% accuracy for teeth localization, along with
a promising sensitivity and specificity of 0.97 and 0.88, respectively, for
subsequent lesion detection.
Related papers
- ToothSegNet: Image Degradation meets Tooth Segmentation in CBCT Images [13.572872371886577]
ToothSegNet is a new framework which acquaints the segmentation model with generated degraded images during training.
ToothSegNet produces more precise segmentation and outperforms the state-of-the-art medical image segmentation methods.
arXiv Detail & Related papers (2023-07-05T01:41:24Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Metal Artifact Reduction with Intra-Oral Scan Data for 3D Low Dose
Maxillofacial CBCT Modeling [0.7444835592104696]
A two-stage metal artifact reduction method is proposed for accurate 3D low-dose maxillofacial CBCT modeling.
In the first stage, an image-to-image deep learning network is employed to mitigate metal-related artifacts.
In the second stage, a 3D maxillofacial model is constructed by segmenting the bones from the dental CBCT image corrected.
arXiv Detail & Related papers (2022-02-08T00:24:41Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - A Learning-based Method for Online Adjustment of C-arm Cone-Beam CT
Source Trajectories for Artifact Avoidance [47.345403652324514]
The reconstruction quality attainable with commercial CBCT devices is insufficient due to metal artifacts in the presence of pedicle screws.
We propose to adjust the C-arm CBCT source trajectory during the scan to optimize reconstruction quality with respect to a certain task.
We demonstrate that convolutional neural networks trained on realistically simulated data are capable of predicting quality metrics that enable scene-specific adjustments of the CBCT source trajectory.
arXiv Detail & Related papers (2020-08-14T09:23:50Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
Individual tooth segmentation from cone beam computed tomography (CBCT) images is essential for an anatomical understanding of orthodontic structures.
The presence of severe metal artifacts in CBCT images hinders the accurate segmentation of each individual tooth.
We propose a neural network for pixel-wise labeling to exploit an instance segmentation framework that is robust to metal artifacts.
arXiv Detail & Related papers (2020-02-06T07:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.