ToothSegNet: Image Degradation meets Tooth Segmentation in CBCT Images
- URL: http://arxiv.org/abs/2307.01979v1
- Date: Wed, 5 Jul 2023 01:41:24 GMT
- Title: ToothSegNet: Image Degradation meets Tooth Segmentation in CBCT Images
- Authors: Jiaxiang Liu, Tianxiang Hu, Yang Feng, Wanghui Ding, Zuozhu Liu
- Abstract summary: ToothSegNet is a new framework which acquaints the segmentation model with generated degraded images during training.
ToothSegNet produces more precise segmentation and outperforms the state-of-the-art medical image segmentation methods.
- Score: 13.572872371886577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In computer-assisted orthodontics, three-dimensional tooth models are
required for many medical treatments. Tooth segmentation from cone-beam
computed tomography (CBCT) images is a crucial step in constructing the models.
However, CBCT image quality problems such as metal artifacts and blurring
caused by shooting equipment and patients' dental conditions make the
segmentation difficult. In this paper, we propose ToothSegNet, a new framework
which acquaints the segmentation model with generated degraded images during
training. ToothSegNet merges the information of high and low quality images
from the designed degradation simulation module using channel-wise cross fusion
to reduce the semantic gap between encoder and decoder, and also refines the
shape of tooth prediction through a structural constraint loss. Experimental
results suggest that ToothSegNet produces more precise segmentation and
outperforms the state-of-the-art medical image segmentation methods.
Related papers
- Boundary feature fusion network for tooth image segmentation [7.554733074482215]
This paper introduces an innovative tooth segmentation network that integrates boundary information to address the issue of indistinct boundaries between teeth and adjacent tissues.
In the most recent STS Data Challenge, our methodology was rigorously tested and received a commendable overall score of 0.91.
arXiv Detail & Related papers (2024-09-06T02:12:21Z) - Teeth Localization and Lesion Segmentation in CBCT Images using
SpatialConfiguration-Net and U-Net [0.4915744683251149]
The localization of teeth and segmentation of periapical lesions are crucial tasks for clinical diagnosis and treatment planning.
In this study, we propose a deep learning-based method utilizing two convolutional neural networks.
The method achieves a 97.3% accuracy for teeth localization, along with a promising sensitivity and specificity of 0.97 and 0.88, respectively, for subsequent lesion detection.
arXiv Detail & Related papers (2023-12-19T14:23:47Z) - MARformer: An Efficient Metal Artifact Reduction Transformer for Dental CBCT Images [53.62335292022492]
Metal teeth implants could bring annoying metal artifacts during the CBCT imaging process.
We develop an efficient Transformer to perform metal artifacts reduction (MAR) from dental CBCT images.
A Patch-wise Perceptive Feed Forward Network (P2FFN) is also proposed to perceive local image information for fine-grained restoration.
arXiv Detail & Related papers (2023-11-16T06:02:03Z) - Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
We propose a novel teeth segmentation model incorporating an M-Net-like structure with Swin Transformers and TAB.
The proposed TAB utilizes a unique attention mechanism that focuses specifically on the complex structures of teeth.
The proposed architecture effectively captures local and global contextual information, accurately defining each tooth and its surrounding structures.
arXiv Detail & Related papers (2023-11-07T06:20:34Z) - Construction of unbiased dental template and parametric dental model for
precision digital dentistry [46.459289444783956]
We develop an unbiased dental template by constructing an accurate dental atlas from CBCT images with guidance of teeth segmentation.
A total of 159 CBCT images of real subjects are collected to perform the constructions.
arXiv Detail & Related papers (2023-04-07T09:39:03Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - A Learning-based Method for Online Adjustment of C-arm Cone-Beam CT
Source Trajectories for Artifact Avoidance [47.345403652324514]
The reconstruction quality attainable with commercial CBCT devices is insufficient due to metal artifacts in the presence of pedicle screws.
We propose to adjust the C-arm CBCT source trajectory during the scan to optimize reconstruction quality with respect to a certain task.
We demonstrate that convolutional neural networks trained on realistically simulated data are capable of predicting quality metrics that enable scene-specific adjustments of the CBCT source trajectory.
arXiv Detail & Related papers (2020-08-14T09:23:50Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
Individual tooth segmentation from cone beam computed tomography (CBCT) images is essential for an anatomical understanding of orthodontic structures.
The presence of severe metal artifacts in CBCT images hinders the accurate segmentation of each individual tooth.
We propose a neural network for pixel-wise labeling to exploit an instance segmentation framework that is robust to metal artifacts.
arXiv Detail & Related papers (2020-02-06T07:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.