論文の概要: ST(OR)2: Spatio-Temporal Object Level Reasoning for Activity Recognition
in the Operating Room
- arxiv url: http://arxiv.org/abs/2312.12250v1
- Date: Tue, 19 Dec 2023 15:33:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 15:01:19.837258
- Title: ST(OR)2: Spatio-Temporal Object Level Reasoning for Activity Recognition
in the Operating Room
- Title(参考訳): ST(OR)2:手術室における活動認識のための時空間オブジェクトレベル推論
- Authors: Idris Hamoud, Muhammad Abdullah Jamal, Vinkle Srivastav, Didier
Mutter, Nicolas Padoy, Omid Mohareri
- Abstract要約: ORにおける外科的活動認識のための新しい試料効率およびオブジェクトベースアプローチを提案する。
本手法は, 臨床医と手術器具の幾何学的配置に着目し, ORにおける重要な物体相互作用のダイナミクスを活用する。
- 参考スコア(独自算出の注目度): 6.132617753806978
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Surgical robotics holds much promise for improving patient safety and
clinician experience in the Operating Room (OR). However, it also comes with
new challenges, requiring strong team coordination and effective OR management.
Automatic detection of surgical activities is a key requirement for developing
AI-based intelligent tools to tackle these challenges. The current
state-of-the-art surgical activity recognition methods however operate on
image-based representations and depend on large-scale labeled datasets whose
collection is time-consuming and resource-expensive. This work proposes a new
sample-efficient and object-based approach for surgical activity recognition in
the OR. Our method focuses on the geometric arrangements between clinicians and
surgical devices, thus utilizing the significant object interaction dynamics in
the OR. We conduct experiments in a low-data regime study for long video
activity recognition. We also benchmark our method againstother object-centric
approaches on clip-level action classification and show superior performance.
- Abstract(参考訳): 手術ロボティクスは、オペレーティング・ルーム(OR)における患者の安全性と臨床経験を改善することを約束している。
しかし同時に、強力なチームの調整と効果的な管理を必要とする、新たな課題も伴う。
外科的活動の自動検出は、これらの課題に取り組むためにAIベースのインテリジェントツールを開発する上で重要な要件である。
しかし,現状の手術活動認識手法は画像に基づく表現に依存しており,収集に時間を要する大規模ラベル付きデータセットに依存している。
本研究は, orにおける手術活動認識のための新しいサンプル効率とオブジェクトベースアプローチを提案する。
本手法は, 臨床医と手術器具の幾何学的配置に着目し, ORにおける重要な物体相互作用のダイナミクスを活用する。
我々は,長時間映像活動認識のための低データレジーム実験を行う。
また,クリップレベルの動作分類における他のオブジェクト指向アプローチに対してベンチマークを行い,優れた性能を示す。
関連論文リスト
- OSSAR: Towards Open-Set Surgical Activity Recognition in Robot-assisted
Surgery [13.843251369739908]
本稿では,OSSAR(Open-Set Surgery Activity Recognition)フレームワークについて紹介する。
提案手法は超球面逆点戦略を利用して特徴空間における未知クラスと未知クラスとの区別を強化する。
我々の主張をサポートするために、公開JIGSAWSデータセットを利用したオープンセットの外科的活動ベンチマークを構築した。
論文 参考訳(メタデータ) (2024-02-10T16:23:12Z) - SAR-RARP50: Segmentation of surgical instrumentation and Action
Recognition on Robot-Assisted Radical Prostatectomy Challenge [72.97934765570069]
外科的動作認識と意味計測のセグメンテーションのための,最初のマルチモーダルなインビボデータセットを公開し,ロボット補助根治術(RARP)の50の縫合ビデオセグメントを収録した。
この課題の目的は、提供されたデータセットのスケールを活用し、外科領域における堅牢で高精度なシングルタスクアクション認識とツールセグメンテーションアプローチを開発することである。
合計12チームがこのチャレンジに参加し、7つのアクション認識方法、9つの計器のセグメンテーション手法、そしてアクション認識と計器のセグメンテーションを統合した4つのマルチタスクアプローチをコントリビュートした。
論文 参考訳(メタデータ) (2023-12-31T13:32:18Z) - Adaptation of Surgical Activity Recognition Models Across Operating
Rooms [10.625208343893911]
手術室における手術活動認識モデルの一般化可能性について検討した。
外科的活動認識モデルの性能を向上させるための新しい領域適応法を提案する。
論文 参考訳(メタデータ) (2022-07-07T04:41:34Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
腹腔鏡下手術における三肢の認識のためにMICCAI 2021で実施した内視鏡的視力障害であるColecTriplet 2021を提案する。
課題の参加者が提案する最先端の深層学習手法の課題設定と評価について述べる。
4つのベースライン法と19の新しいディープラーニングアルゴリズムが提示され、手術ビデオから直接手術行動三重項を認識し、平均平均精度(mAP)は4.2%から38.1%である。
論文 参考訳(メタデータ) (2022-04-10T18:51:55Z) - The SARAS Endoscopic Surgeon Action Detection (ESAD) dataset: Challenges
and methods [15.833413083110903]
本稿では,内視鏡下低侵襲手術における外科医の行動検出問題に取り組むための,最初の大規模データセットであるesadについて述べる。
このデータセットは、前立腺切除術中にキャプチャされた実際の内視鏡的ビデオフレーム上の21のアクションクラスに対するバウンディングボックスアノテーションを提供し、最近のMIDL 2020チャレンジのベースとして使用された。
論文 参考訳(メタデータ) (2021-04-07T15:11:51Z) - One-shot action recognition towards novel assistive therapies [63.23654147345168]
この作業は、アクション模倣ゲームを含む医療療法の自動分析によって動機づけられます。
提案手法は、異種運動データ条件を標準化する前処理ステップを組み込んだものである。
自閉症者に対するセラピー支援のための自動ビデオ分析の実際の利用事例について検討した。
論文 参考訳(メタデータ) (2021-02-17T19:41:37Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z) - Multi-Task Recurrent Neural Network for Surgical Gesture Recognition and
Progress Prediction [17.63619129438996]
本稿では,手術動作の同時認識のためのマルチタスクリカレントニューラルネットワークを提案する。
マルチタスクフレームワークでは,手作業によるラベリングやトレーニングを伴わずに,進捗推定による認識性能が向上することが実証された。
論文 参考訳(メタデータ) (2020-03-10T14:28:02Z) - Automatic Gesture Recognition in Robot-assisted Surgery with
Reinforcement Learning and Tree Search [63.07088785532908]
共同手術におけるジェスチャー分割と分類のための強化学習と木探索に基づく枠組みを提案する。
我々のフレームワークは,JIGSAWSデータセットのサチューリングタスクにおいて,精度,編集スコア,F1スコアの点で,既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2020-02-20T13:12:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。