POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning
- URL: http://arxiv.org/abs/2312.12276v3
- Date: Fri, 7 Jun 2024 23:42:45 GMT
- Title: POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning
- Authors: Junxiang Wang, Guangji Bai, Wei Cheng, Zhengzhang Chen, Liang Zhao, Haifeng Chen,
- Abstract summary: Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications.
We introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation.
Our proposed POND model outperforms all state-of-the-art comparison methods by up to $66%$ on the F1-score.
- Score: 40.197245493051526
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to $66\%$ on the F1-score.
Related papers
- Role Prompting Guided Domain Adaptation with General Capability Preserve
for Large Language Models [55.51408151807268]
When tailored to specific domains, Large Language Models (LLMs) tend to experience catastrophic forgetting.
crafting a versatile model for multiple domains simultaneously often results in a decline in overall performance.
We present the RolE Prompting Guided Multi-Domain Adaptation (REGA) strategy.
arXiv Detail & Related papers (2024-03-05T08:22:41Z) - DPOD: Domain-Specific Prompt Tuning for Multimodal Fake News Detection [15.599951180606947]
Fake news using out-of-context images has become widespread and is a relevant problem in this era of information overload.
We explore whether out-of-domain data can help to improve out-of-context misinformation detection of a desired domain.
We propose a novel framework termed DPOD (Domain-specific Prompt-tuning using Out-of-Domain data)
arXiv Detail & Related papers (2023-11-27T08:49:26Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - Context-aware Domain Adaptation for Time Series Anomaly Detection [69.3488037353497]
Time series anomaly detection is a challenging task with a wide range of real-world applications.
Recent efforts have been devoted to time series domain adaptation to leverage knowledge from similar domains.
We propose a framework that combines context sampling and anomaly detection into a joint learning procedure.
arXiv Detail & Related papers (2023-04-15T02:28:58Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
We argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models.
We name two-stream adaptive learning (TAL) to simultaneously model these two kinds of information.
Our framework can be applied to both single-source and multi-source domain generalization tasks.
arXiv Detail & Related papers (2021-11-29T01:27:42Z) - Multi-Domain Spoken Language Understanding Using Domain- and Task-Aware
Parameterization [78.93669377251396]
Spoken language understanding has been addressed as a supervised learning problem, where a set of training data is available for each domain.
One existing approach solves the problem by conducting multi-domain learning, using shared parameters for joint training across domains.
We propose to improve the parameterization of this method by using domain-specific and task-specific model parameters.
arXiv Detail & Related papers (2020-04-30T15:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.