Dynamic Domain Information Modulation Algorithm for Multi-domain Sentiment Analysis
- URL: http://arxiv.org/abs/2505.06630v1
- Date: Sat, 10 May 2025 12:36:00 GMT
- Title: Dynamic Domain Information Modulation Algorithm for Multi-domain Sentiment Analysis
- Authors: Chunyi Yue, Ang Li,
- Abstract summary: Multi-domain sentiment classification aims to mitigate poor performance models due to the scarcity of labeled data in a single domain.<n>We propose a dynamic information modulation algorithm to efficiently generate the domain information required for sentiment classification in each domain.
- Score: 8.257032486349246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-domain sentiment classification aims to mitigate poor performance models due to the scarcity of labeled data in a single domain, by utilizing data labeled from various domains. A series of models that jointly train domain classifiers and sentiment classifiers have demonstrated their advantages, because domain classification helps generate necessary information for sentiment classification. Intuitively, the importance of sentiment classification tasks is the same in all domains for multi-domain sentiment classification; but domain classification tasks are different because the impact of domain information on sentiment classification varies across different fields; this can be controlled through adjustable weights or hyper parameters. However, as the number of domains increases, existing hyperparameter optimization algorithms may face the following challenges: (1) tremendous demand for computing resources, (2) convergence problems, and (3) high algorithm complexity. To efficiently generate the domain information required for sentiment classification in each domain, we propose a dynamic information modulation algorithm. Specifically, the model training process is divided into two stages. In the first stage, a shared hyperparameter, which would control the proportion of domain classification tasks across all fields, is determined. In the second stage, we introduce a novel domain-aware modulation algorithm to adjust the domain information contained in the input text, which is then calculated based on a gradient-based and loss-based method. In summary, experimental results on a public sentiment analysis dataset containing 16 domains prove the superiority of the proposed method.
Related papers
- DAOT: Domain-Agnostically Aligned Optimal Transport for Domain-Adaptive
Crowd Counting [35.83485358725357]
Domain adaptation is commonly employed in crowd counting to bridge the domain gaps between different datasets.
Existing domain adaptation methods tend to focus on inter-dataset differences while overlooking the intra-differences within the same dataset.
We propose a Domain-agnostically Aligned Optimal Transport (DAOT) strategy that aligns domain-agnostic factors between domains.
arXiv Detail & Related papers (2023-08-10T02:59:40Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains.
We propose a novel representation learning methodology that selectively enforces prediction consistency between source domains.
arXiv Detail & Related papers (2022-06-16T01:57:35Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
Unsupervised domain adaptation aims to train a model from the labeled source domain to make predictions on the unlabeled target domain.
Existing methods tend to align the two domains directly at the domain-level, or perform class-level domain alignment based on deep feature.
In this paper, we develop this work on the method of class-level alignment.
arXiv Detail & Related papers (2021-09-14T09:23:27Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Domain2Vec: Domain Embedding for Unsupervised Domain Adaptation [56.94873619509414]
Conventional unsupervised domain adaptation studies the knowledge transfer between a limited number of domains.
We propose a novel Domain2Vec model to provide vectorial representations of visual domains based on joint learning of feature disentanglement and Gram matrix.
We demonstrate that our embedding is capable of predicting domain similarities that match our intuition about visual relations between different domains.
arXiv Detail & Related papers (2020-07-17T22:05:09Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue.
We propose to improve the semantic-level alignment with different strategies for stuff regions and for things.
In addition to our proposed method, we show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains.
arXiv Detail & Related papers (2020-03-18T04:43:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.