Towards a Problem-Oriented Domain Adaptation Framework for Machine Learning
- URL: http://arxiv.org/abs/2501.04528v1
- Date: Wed, 08 Jan 2025 14:19:54 GMT
- Title: Towards a Problem-Oriented Domain Adaptation Framework for Machine Learning
- Authors: Philipp Spitzer, Dominik Martin, Laurin Eichberger, Niklas Kühl,
- Abstract summary: Domain adaptation is a sub-field of machine learning that involves transferring knowledge from a source domain to perform the same task in the target domain.
Recent advances in the field offer promising methods, but it is still challenging for researchers and practitioners to determine if domain adaptation is suitable for a given problem.
This article employs design science research to develop a problem-oriented framework for domain adaptation.
- Score: 2.5499055723658097
- License:
- Abstract: Domain adaptation is a sub-field of machine learning that involves transferring knowledge from a source domain to perform the same task in the target domain. It is a typical challenge in machine learning that arises, e.g., when data is obtained from various sources or when using a data basis that changes over time. Recent advances in the field offer promising methods, but it is still challenging for researchers and practitioners to determine if domain adaptation is suitable for a given problem -- and, subsequently, to select the appropriate approach. This article employs design science research to develop a problem-oriented framework for domain adaptation, which is matured in three evaluation episodes. We describe a framework that distinguishes between five domain adaptation scenarios, provides recommendations for addressing each scenario, and offers guidelines for determining if a problem falls into one of these scenarios. During the multiple evaluation episodes, the framework is tested on artificial and real-world datasets and an experimental study involving 100 participants. The evaluation demonstrates that the framework has the explanatory power to capture any domain adaptation problem effectively. In summary, we provide clear guidance for researchers and practitioners who want to employ domain adaptation but lack in-depth knowledge of the possibilities.
Related papers
- Feature Based Methods in Domain Adaptation for Object Detection: A Review Paper [0.6437284704257459]
Domain adaptation aims to enhance the performance of machine learning models when deployed in target domains with distinct data distributions.
This review delves into advanced methodologies for domain adaptation, including adversarial learning, discrepancy-based, multi-domain, teacher-student, ensemble, and Vision Language Models.
Special attention is given to strategies that minimize the reliance on extensive labeled data, particularly in scenarios involving synthetic-to-real domain shifts.
arXiv Detail & Related papers (2024-12-23T06:34:23Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities [55.87169702896249]
Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a labeled source domain to perform well on an unlabeled target domain with some data distribution shift.
We present a complete and fair evaluation of existing shallow algorithms, including reweighting, mapping, and subspace alignment.
Our benchmark highlights the importance of realistic validation and provides practical guidance for real-life applications.
arXiv Detail & Related papers (2024-07-16T12:52:29Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
EEG signals manifest subject instability in subject-agnostic affective Brain-computer interfaces (aBCIs)
We propose a novel framework, meta-learning based augmented domain adaptation for subject-agnostic aBCIs.
Our proposed approach is shown to be effective in experiments on a public aBICs dataset.
arXiv Detail & Related papers (2023-10-20T23:44:34Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
Generalizing policies across different domains with dynamics mismatch poses a significant challenge in reinforcement learning.
We present the Value-Guided Data Filtering (VGDF) algorithm, which selectively shares transitions from the source domain based on the proximity of paired value targets.
arXiv Detail & Related papers (2023-05-28T04:08:40Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
The research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years.
We provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme.
We compare the results of more than 30 representative SFDA methods on three popular classification benchmarks.
arXiv Detail & Related papers (2023-02-23T06:32:09Z) - Domain Adaptation with Incomplete Target Domains [61.68950959231601]
We propose an Incomplete Data Imputation based Adversarial Network (IDIAN) model to address this new domain adaptation challenge.
In the proposed model, we design a data imputation module to fill the missing feature values based on the partial observations in the target domain.
We conduct experiments on both cross-domain benchmark tasks and a real world adaptation task with imperfect target domains.
arXiv Detail & Related papers (2020-12-03T00:07:40Z) - A Brief Review of Domain Adaptation [1.2043574473965317]
This paper focuses on unsupervised domain adaptation, where the labels are only available in the source domain.
It presents some successful shallow and deep domain adaptation approaches that aim to deal with domain adaptation problems.
arXiv Detail & Related papers (2020-10-07T07:05:32Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Generalized Zero-Shot Domain Adaptation via Coupled Conditional
Variational Autoencoders [23.18781318003242]
We present a novel Conditional Coupled Variational Autoencoder (CCVAE) which can generate synthetic target domain features for unseen classes from their source domain counterparts.
Experiments have been conducted on three domain adaptation datasets including a bespoke X-ray security checkpoint dataset to simulate a real-world application in aviation security.
arXiv Detail & Related papers (2020-08-03T21:48:50Z) - Continuous Domain Adaptation with Variational Domain-Agnostic Feature
Replay [78.7472257594881]
Learning in non-stationary environments is one of the biggest challenges in machine learning.
Non-stationarity can be caused by either task drift, or the domain drift.
We propose variational domain-agnostic feature replay, an approach that is composed of three components.
arXiv Detail & Related papers (2020-03-09T19:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.