First qualitative observations on deep learning vision model YOLO and DETR for automated driving in Austria
- URL: http://arxiv.org/abs/2312.12314v2
- Date: Sat, 28 Dec 2024 16:34:33 GMT
- Title: First qualitative observations on deep learning vision model YOLO and DETR for automated driving in Austria
- Authors: Stefan Schoder,
- Abstract summary: This study investigates the application of single and two-stage 2D-object detection algorithms like You Only Look Once (YOLO)<n>The research focuses on the unique challenges posed by the road conditions and traffic scenarios in Austria.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the application of single and two-stage 2D-object detection algorithms like You Only Look Once (YOLO), Real-Time DEtection TRansformer (RT-DETR) algorithm for automated object detection to enhance road safety for autonomous driving on Austrian roads. The YOLO algorithm is a state-of-the-art real-time object detection system known for its efficiency and accuracy. In the context of driving, its potential to rapidly identify and track objects is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. The research focuses on the unique challenges posed by the road conditions and traffic scenarios in Austria. The country's diverse landscape, varying weather conditions, and specific traffic regulations necessitate a tailored approach for reliable object detection. The study utilizes a selective dataset comprising images and videos captured on Austrian roads, encompassing urban, rural, and alpine environments.
Related papers
- Application of YOLOv8 in monocular downward multiple Car Target detection [0.0]
This paper presents an improved autonomous target detection network based on YOLOv8.<n>The proposed approach achieves highly efficient and precise detection of multi-scale, small, and remote objects.<n> Experimental results demonstrate that the enhanced model can effectively detect both large and small objects with a detection accuracy of 65%.
arXiv Detail & Related papers (2025-05-15T06:58:45Z) - Data Fusion of Semantic and Depth Information in the Context of Object Detection [0.0]
Region-based Convolution Neural Network (R-CNN) with inception v2 is utilized.
Cutting-edge technologies of computer vision algorithms are applied to generate a 3D reference point of the region of interest.
arXiv Detail & Related papers (2024-12-04T17:26:30Z) - RainSD: Rain Style Diversification Module for Image Synthesis
Enhancement using Feature-Level Style Distribution [5.500457283114346]
This paper presents a synthetic road dataset with sensor blockage generated from real road dataset BDD100K.
Using this dataset, the degradation of diverse multi-task networks for autonomous driving has been thoroughly evaluated and analyzed.
The tendency of the performance degradation of deep neural network-based perception systems for autonomous vehicle has been analyzed in depth.
arXiv Detail & Related papers (2023-12-31T11:30:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Language-Guided 3D Object Detection in Point Cloud for Autonomous
Driving [91.91552963872596]
We propose a new multi-modal visual grounding task, termed LiDAR Grounding.
It jointly learns the LiDAR-based object detector with the language features and predicts the targeted region directly from the detector.
Our work offers a deeper insight into the LiDAR-based grounding task and we expect it presents a promising direction for the autonomous driving community.
arXiv Detail & Related papers (2023-05-25T06:22:10Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
We propose a threat detection mechanism for autonomous self-driving cars using dashcam videos.
There are four major components, namely, YOLO to identify the objects, advanced lane detection algorithm, multi regression model to measure the distance of the object from the camera.
The final accuracy of our proposed Threat Detection Model (TDM) is 82.65%.
arXiv Detail & Related papers (2022-09-06T12:01:07Z) - Multimodal Detection of Unknown Objects on Roads for Autonomous Driving [4.3310896118860445]
We propose a novel pipeline to detect unknown objects.
We make use of lidar and camera data by combining state-of-the art detection models in a sequential manner.
arXiv Detail & Related papers (2022-05-03T10:58:41Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
We introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors.
The performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR.
We experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA.
arXiv Detail & Related papers (2022-03-15T08:32:56Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Object Detection Under Rainy Conditions for Autonomous Vehicles: A
Review of State-of-the-Art and Emerging Techniques [5.33024001730262]
This paper presents a tutorial on state-of-the-art techniques for mitigating the influence of rainy conditions on an autonomous vehicle's ability to detect objects.
Our goal includes surveying and analyzing the performance of object detection methods trained and tested using visual data captured under clear and rainy conditions.
arXiv Detail & Related papers (2020-06-30T02:05:10Z) - Improved YOLOv3 Object Classification in Intelligent Transportation
System [29.002873450422083]
An algorithm based on YOLOv3 is proposed to realize the detection and classification of vehicles, drivers, and people on the highway.
The model has a good performance and is robust to road blocking, different attitudes, and extreme lighting.
arXiv Detail & Related papers (2020-04-08T11:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.