論文の概要: FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation
- arxiv url: http://arxiv.org/abs/2312.12455v2
- Date: Sun, 19 May 2024 05:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 23:50:08.714852
- Title: FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation
- Title(参考訳): FengWu-4DVar:4次元変分同化によるデータ駆動型気象予報モデルの結合
- Authors: Yi Xiao, Lei Bai, Wei Xue, Kang Chen, Tao Han, Wanli Ouyang,
- Abstract要約: 我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
- 参考スコア(独自算出の注目度): 67.20588721130623
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Weather forecasting is a crucial yet highly challenging task. With the maturity of Artificial Intelligence (AI), the emergence of data-driven weather forecasting models has opened up a new paradigm for the development of weather forecasting systems. Despite the significant successes that have been achieved (e.g., surpassing advanced traditional physical models for global medium-range forecasting), existing data-driven weather forecasting models still rely on the analysis fields generated by the traditional assimilation and forecasting system, which hampers the significance of data-driven weather forecasting models regarding both computational cost and forecasting accuracy. In this work, we explore the possibility of coupling the data-driven weather forecasting model with data assimilation by integrating the global AI weather forecasting model, FengWu, with one of the most popular assimilation algorithms, Four-Dimensional Variational (4DVar) assimilation, and develop an AI-based cyclic weather forecasting system, FengWu-4DVar. FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model and consider the temporal evolution of atmospheric dynamics to obtain accurate analysis fields for making predictions in a cycling manner without the help of physical models. Owning to the auto-differentiation ability of deep learning models, FengWu-4DVar eliminates the need of developing the cumbersome adjoint model, which is usually required in the traditional implementation of the 4DVar algorithm. Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields for making accurate and efficient iterative predictions.
- Abstract(参考訳): 天気予報は極めて重要な課題である。
人工知能(AI)の成熟に伴い、データ駆動型天気予報モデルの出現により、気象予報システムの開発のための新しいパラダイムが開かれた。
達成された大きな成功にもかかわらず(例えば、グローバルな中距離予測のための先進的な物理モデルを上回る)、既存のデータ駆動天気予報モデルは、計算コストと予測精度の両方に関して、データ駆動天気予報モデルの重要性を損なう従来の同化予測システムによって生成された分析分野に依存している。
本研究では,グローバルなAI天気予報モデルであるFengWuと,最も一般的な同化アルゴリズムである4次元変分法(4DVar)とを組み合わせることで,データ駆動型天気予報モデルとデータ同化との結合の可能性を検討するとともに,AIベースの循環気象予報システムFengWu-4DVarを開発した。
FengWu-4DVarは、観測データをデータ駆動型気象予報モデルに組み込むことができ、大気力学の時間的進化を考慮し、物理モデルの助けなしにサイクリング方式で予測を行うための正確な解析場を得ることができる。
FengWu-4DVarは、ディープラーニングモデルの自己微分能力に依拠し、4DVarアルゴリズムの伝統的な実装に通常必要となる、面倒な随伴モデルを開発する必要性を排除している。
シミュレーションされた観測データセットの実験により、FengWu-4DVarは正確かつ効率的な反復予測を行うための合理的な解析場を生成することができることが示された。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Masked Autoregressive Model for Weather Forecasting [7.960598061739508]
Masked Autoregressive Model for Weather Forecasting (MAM4WF)
本研究では,MAM4WF(Masked Autoregressive Model for Weather Forecasting)を提案する。
このモデルは、トレーニング中に入力データの一部をマスクするマスク付きモデリングを利用する。
気象・気象予報・映像フレーム予測データを用いてMAM4WFを評価し,5つのテストデータセットにおいて優れた性能を示した。
論文 参考訳(メタデータ) (2024-09-30T09:17:04Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - A Benchmark for AI-based Weather Data Assimilation [10.100157158477145]
本研究では,シミュレーション観測,実世界観測,ERA5再解析により構築したベンチマークであるDABenchを提案する。
実験の結果,4DVarFormerV2とSformerを統合したエンド・ツー・エンドの天気予報システムが実世界の観測を同化できることが確認された。
提案されているDABenchは、AIベースのDA、AIベースの天気予報、および関連するドメインの研究を大幅に前進させる。
論文 参考訳(メタデータ) (2024-08-21T08:50:19Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
我々は高解像度データへの共通依存から逸脱する新しい戦略を導入する。
本稿では,データ拡張と処理に対する新たなアプローチとして,変数の追加による従来のアプローチの改善について述べる。
その結果, 解像度が低いにもかかわらず, 提案手法は大気条件の予測にかなり精度が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-13T03:01:22Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。