Fast Cell Library Characterization for Design Technology Co-Optimization Based on Graph Neural Networks
- URL: http://arxiv.org/abs/2312.12784v4
- Date: Tue, 19 Mar 2024 08:06:48 GMT
- Title: Fast Cell Library Characterization for Design Technology Co-Optimization Based on Graph Neural Networks
- Authors: Tianliang Ma, Guangxi Fan, Zhihui Deng, Xuguang Sun, Kainlu Low, Leilai Shao,
- Abstract summary: Design technology co-optimization (DTCO) plays a critical role in achieving optimal power, performance, and area.
We propose a graph neural network (GNN)-based machine learning model for rapid and accurate cell library characterization.
- Score: 0.1752969190744922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Design technology co-optimization (DTCO) plays a critical role in achieving optimal power, performance, and area (PPA) for advanced semiconductor process development. Cell library characterization is essential in DTCO flow, but traditional methods are time-consuming and costly. To overcome these challenges, we propose a graph neural network (GNN)-based machine learning model for rapid and accurate cell library characterization. Our model incorporates cell structures and demonstrates high prediction accuracy across various process-voltage-temperature (PVT) corners and technology parameters. Validation with 512 unseen technology corners and over one million test data points shows accurate predictions of delay, power, and input pin capacitance for 33 types of cells, with a mean absolute percentage error (MAPE) $\le$ 0.95% and a speed-up of 100X compared with SPICE simulations. Additionally, we investigate system-level metrics such as worst negative slack (WNS), leakage power, and dynamic power using predictions obtained from the GNN-based model on unseen corners. Our model achieves precise predictions, with absolute error $\le$3.0 ps for WNS, percentage errors $\le$0.60% for leakage power, and $\le$0.99% for dynamic power, when compared to golden reference. With the developed model, we further proposed a fine-grained drive strength interpolation methodology to enhance PPA for small-to-medium-scale designs, resulting in an approximate 1-3% improvement.
Related papers
- Improving the performance of Stein variational inference through extreme sparsification of physically-constrained neural network models [0.815557531820863]
We show that $L_$ sparsification prior to Stein variational gradient descent ($L_$+SVGD) is a more robust and efficient means of uncertainty quantification.
Specifically, $L_$+SVGD demonstrates superior resilience to noise, the ability to perform well in extrapolated regions, and a faster convergence rate to an optimal solution.
arXiv Detail & Related papers (2024-06-30T16:50:11Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - GNN4REL: Graph Neural Networks for Predicting Circuit Reliability
Degradation [7.650966670809372]
We employ graph neural networks (GNNs) to accurately estimate the impact of process variations and device aging on the delay of any path within a circuit.
GNN4REL is trained on a FinFET technology model that is calibrated against industrial 14nm measurement data.
We successfully estimate delay degradations of all paths -- notably within seconds -- with a mean absolute error down to 0.01 percentage points.
arXiv Detail & Related papers (2022-08-04T20:09:12Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Physics-enhanced deep surrogates for partial differential equations [30.731686639510517]
We present a "physics-enhanced deep-surrogate" ("PEDS") approach towards developing fast surrogate models for complex physical systems.
Specifically, a combination of a low-fidelity, explainable physics simulator and a neural network generator is proposed, which is trained end-to-end to globally match the output of an expensive high-fidelity numerical solver.
arXiv Detail & Related papers (2021-11-10T18:43:18Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.