Testing the Segment Anything Model on radiology data
- URL: http://arxiv.org/abs/2312.12880v2
- Date: Thu, 16 May 2024 08:06:44 GMT
- Title: Testing the Segment Anything Model on radiology data
- Authors: José Guilherme de Almeida, Nuno M. Rodrigues, Sara Silva, Nickolas Papanikolaou,
- Abstract summary: The Segment Anything Model (SAM) was recently proposed and stands as the first foundation model for image segmentation.
We show that while acceptable in a very limited set of cases, the overall trend implies that these models are insufficient for MRI segmentation.
We note that while foundation models trained on natural images are set to become key aspects of predictive modelling, they may prove ineffective when used on other imaging modalities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models trained with large amounts of data have become a recent and effective approach to predictive problem solving -- these have become known as "foundation models" as they can be used as fundamental tools for other applications. While the paramount examples of image classification (earlier) and large language models (more recently) led the way, the Segment Anything Model (SAM) was recently proposed and stands as the first foundation model for image segmentation, trained on over 10 million images and with recourse to over 1 billion masks. However, the question remains -- what are the limits of this foundation? Given that magnetic resonance imaging (MRI) stands as an important method of diagnosis, we sought to understand whether SAM could be used for a few tasks of zero-shot segmentation using MRI data. Particularly, we wanted to know if selecting masks from the pool of SAM predictions could lead to good segmentations. Here, we provide a critical assessment of the performance of SAM on magnetic resonance imaging data. We show that, while acceptable in a very limited set of cases, the overall trend implies that these models are insufficient for MRI segmentation across the whole volume, but can provide good segmentations in a few, specific slices. More importantly, we note that while foundation models trained on natural images are set to become key aspects of predictive modelling, they may prove ineffective when used on other imaging modalities.
Related papers
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
An increasing privacy concern exists regarding training large-scale image segmentation models on unauthorized private data.
We exploit the concept of unlearnable examples to make images unusable to model training by generating and adding unlearnable noise into the original images.
We empirically verify the effectiveness of UnSeg across 6 mainstream image segmentation tasks, 10 widely used datasets, and 7 different network architectures.
arXiv Detail & Related papers (2024-10-13T16:34:46Z) - Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - SAM on Medical Images: A Comprehensive Study on Three Prompt Modes [12.42280534113305]
The Segment Anything Model (SAM) made an eye-catching debut recently and inspired many researchers to explore its potential and limitation in terms of zero-shot generalization capability.
In this paper, we evaluate whether SAM has the potential to become the foundation model for medical image segmentation tasks.
We also explore what kind of prompt can lead to the best zero-shot performance with different modalities.
arXiv Detail & Related papers (2023-04-28T18:18:07Z) - Generalist Vision Foundation Models for Medical Imaging: A Case Study of
Segment Anything Model on Zero-Shot Medical Segmentation [5.547422331445511]
We report quantitative and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks.
Our study indicates the versatility of generalist vision foundation models on medical imaging.
arXiv Detail & Related papers (2023-04-25T08:07:59Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
The Segment Anything Model (SAM) is a recently developed large model for general-purpose segmentation for computer vision tasks.
SAM was trained using 11 million images with over 1 billion masks and can produce segmentation results for a wide range of objects in natural scene images.
This paper shows that although SAM does not immediately give high-quality segmentation for medical image data, its generated masks, features, and stability scores are useful for building and training better medical image segmentation models.
arXiv Detail & Related papers (2023-04-22T07:11:53Z) - SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model [1.1221592576472588]
We evaluate the zero-shot capabilities of the Segment Anything Model for medical image segmentation.
We show that SAM generalizes well to CT data, making it a potential catalyst for the advancement of semi-automatic segmentation tools.
arXiv Detail & Related papers (2023-04-10T18:20:29Z) - Segment Anything Model (SAM) for Digital Pathology: Assess Zero-shot
Segmentation on Whole Slide Imaging [12.533476185972527]
The segment anything model (SAM) was released as a foundation model for image segmentation.
We evaluate the zero-shot segmentation performance of SAM model on representative segmentation tasks on whole slide imaging (WSI)
The results suggest that the zero-shot SAM model achieves remarkable segmentation performance for large connected objects.
arXiv Detail & Related papers (2023-04-09T04:06:59Z) - Segment Anything [108.16489338211093]
We build the largest segmentation dataset to date, with over 1 billion masks on 11M licensed and privacy respecting images.
The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks.
We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive.
arXiv Detail & Related papers (2023-04-05T17:59:46Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.