Exploring the transition between Quantum and Classical Mechanics
- URL: http://arxiv.org/abs/2405.18564v1
- Date: Tue, 28 May 2024 20:18:16 GMT
- Title: Exploring the transition between Quantum and Classical Mechanics
- Authors: E. Aldo Arroyo,
- Abstract summary: We investigate the transition from quantum to classical mechanics using a one-dimensional free particle model.
We find that the quantum probability density coincides with the classical normal distribution of the particle's final position.
We propose a novel approach to recover the classical distribution from the quantum one.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the transition from quantum to classical mechanics using a one-dimensional free particle model. In the classical analysis, we consider the initial positions and velocities of the particle drawn from Gaussian distributions. Since the final position of the particle depends on these initial conditions, convolving the Gaussian distributions associated with these initial conditions gives us the distribution of the final positions. In the quantum scenario, using an initial Gaussian wave packet, the temporal evolution provides the final wave function, and from it, the quantum probability density. We find that the quantum probability density coincides with the classical normal distribution of the particle's final position obtained from the convolution theorem. However, for superpositions of Gaussian distributions, the classical and quantum results deviate due to quantum interference. To address this issue, we propose a novel approach to recover the classical distribution from the quantum one. This approach involves removing the quantum interference effects through truncated Fourier analysis. These results are consistent with modern quantum decoherence theory. This comprehensive analysis enhances our understanding of the classical-quantum correspondence and the mechanisms underlying the emergence of classicality from quantum systems.
Related papers
- The weak field limit of quantum matter back-reacting on classical
spacetime [0.0]
Consistent coupling of quantum and classical degrees of freedom exists so long as there is diffusion of the classical degrees of freedom and decoherence of the quantum system.
We derive the Newtonian limit of such classical-quantum (CQ) theories of gravity.
arXiv Detail & Related papers (2023-07-05T18:01:06Z) - Quantum dissipation and the virial theorem [22.1682776279474]
We study the celebrated virial theorem for dissipative systems, both classical and quantum.
The non-Markovian nature of the quantum noise leads to novel bath-induced terms in the virial theorem.
We also consider the case of an electrical circuit with thermal noise and analyze the role of non-Markovian noise in the context of the virial theorem.
arXiv Detail & Related papers (2023-02-23T13:28:11Z) - Quantum Uncertainty as an Intrinsic Clock [0.0]
In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom.
We show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet.
This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrodinger equation.
arXiv Detail & Related papers (2022-12-19T13:32:55Z) - Exact classical limit of the quantum bouncer [0.0]
We develop a systematic approach to determine the classical limit of periodic quantum systems.
We show that for realistic systems, the quantum corrections are strongly suppressed (by a factor of $sim 10-10$) with respect to the classical result.
arXiv Detail & Related papers (2022-08-28T19:44:15Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Measurement of a quantum system with a classical apparatus using
ensembles on configuration space [0.48733623015338234]
We use the approach of ensembles on configurations space to give a detailed account of a classical apparatus measuring the position of a quantum particle.
We show that the probability of the pointer of the classical apparatus is left in a state that corresponds to the probability of the quantum particle.
Since this formalism incorporates uncertainties and finite measurement precision, it is well suited for metrological applications.
arXiv Detail & Related papers (2022-05-19T15:48:12Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum
Dynamics of Cosmological Perturbations [0.0]
entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements.
We show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced.
arXiv Detail & Related papers (2021-10-06T13:43:00Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.