Defining and executing temporal constraints for evaluating engineering
artifact compliance
- URL: http://arxiv.org/abs/2312.13012v1
- Date: Wed, 20 Dec 2023 13:26:31 GMT
- Title: Defining and executing temporal constraints for evaluating engineering
artifact compliance
- Authors: Cosmina-Cristina Ratiu, Christoph Mayr-Dorn, Alexander Egyed
- Abstract summary: Process compliance focuses on ensuring that the actual engineering work is followed as closely as possible to the described engineering processes.
Checking these process constraints is still a daunting task that requires a lot of manual work and delivers feedback to engineers only late in the process.
We present an automated constraint checking approach that can incrementally check temporal constraints across inter-related engineering artifacts upon every artifact change.
- Score: 56.08728135126139
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Engineering processes for safety-critical systems describe the steps and
sequence that guide engineers from refining user requirements into executable
code, as well as producing the artifacts, traces, and evidence that the
resulting system is of high quality. Process compliance focuses on ensuring
that the actual engineering work is followed as closely as possible to the
described engineering processes. To this end, temporal constraints describe the
ideal sequence of steps. Checking these process constraints, however, is still
a daunting task that requires a lot of manual work and delivers feedback to
engineers only late in the process. In this paper, we present an automated
constraint checking approach that can incrementally check temporal constraints
across inter-related engineering artifacts upon every artifact change thereby
enabling timely feedback to engineers on process deviations. Temporal
constraints are expressed in the Object Constraint Language (OCL) extended with
operators from Linear Temporal Logic (LTL). We demonstrate the ability of our
approach to support a wide range of higher level temporal patterns. We further
show that for constraints in an industry-derived use case, the average
evaluation time for a single constraint takes around 0.2 milliseconds.
Related papers
- DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications [59.01527054553122]
Linear temporal logic (LTL) has recently been adopted as a powerful formalism for specifying complex, temporally extended tasks in reinforcement learning (RL)
Existing approaches suffer from several shortcomings: they are often only applicable to finite-horizon fragments, are restricted to suboptimal solutions, and do not adequately handle safety constraints.
In this work, we propose a novel learning approach to address these concerns.
Our method leverages the structure of B"uchia, which explicitly represent the semantics of automat- specifications, to learn policies conditioned on sequences of truth assignments that lead to satisfying the desired formulae.
arXiv Detail & Related papers (2024-10-06T21:30:38Z) - LTLDoG: Satisfying Temporally-Extended Symbolic Constraints for Safe Diffusion-based Planning [12.839846486863308]
In this work, we focus on generating long-horizon trajectories that adhere to novel static and temporally-extended constraints/instructions at test time.
We propose a data-driven diffusion-based framework, finiteDoG, that modifies the inference steps of the reverse process given an instruction specified using linear temporal logic.
Experiments in robot navigation and manipulation illustrate that the method is able to generate trajectories that satisfy formulae that specify obstacle avoidance and visitation sequences.
arXiv Detail & Related papers (2024-05-07T11:54:22Z) - From Instructions to Constraints: Language Model Alignment with
Automatic Constraint Verification [70.08146540745877]
We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments.
We propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints.
arXiv Detail & Related papers (2024-03-10T22:14:54Z) - Constant-time Motion Planning with Anytime Refinement for Manipulation [17.543746580669662]
We propose an anytime refinement approach that works in combination with constant-time motion planners (CTMP) algorithms.
Our proposed framework, as it operates as a constant time algorithm, rapidly generates an initial solution within a user-defined time threshold.
functioning as an anytime algorithm, it iteratively refines the solution's quality within the allocated time budget.
arXiv Detail & Related papers (2023-11-01T20:40:10Z) - Reinforcement Learning Under Probabilistic Spatio-Temporal Constraints
with Time Windows [0.0]
We propose an automata-theoretic approach for reinforcement learning (RL) under complex-temporal constraints with time windows.
We provide theoretical guarantees on the resulting probability of constraint satisfaction.
We also provide numerical results in a scenario where a robot explores the environment to discover high-reward regions.
arXiv Detail & Related papers (2023-07-29T06:47:14Z) - Understanding the Challenges of Deploying Live-Traceability Solutions [45.235173351109374]
SAFA.ai is a startup focusing on fine-tuning project-specific models that deliver automated traceability in a near real-time environment.
This paper describes the challenges that characterize commercializing software traceability and highlights possible future directions.
arXiv Detail & Related papers (2023-06-19T14:34:16Z) - Inverse Reinforcement Learning of Autonomous Behaviors Encoded as
Weighted Finite Automata [18.972270182221262]
This paper presents a method for learning logical task specifications and cost functions from demonstrations.
We employ a spectral learning approach to extract a weighted finite automaton (WFA), approximating the unknown logic structure of the task.
We define a product between the WFA for high-level task guidance and a Labeled Markov decision process (L-MDP) for low-level control and optimize a cost function that matches the demonstrator's behavior.
arXiv Detail & Related papers (2021-03-10T06:42:10Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
We study the problem of learning to satisfy temporal logic specifications with a group of agents in an unknown environment.
We develop the first multi-agent reinforcement learning technique for temporal logic specifications.
We provide correctness and convergence guarantees for our main algorithm.
arXiv Detail & Related papers (2021-02-01T01:13:03Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.