LTLDoG: Satisfying Temporally-Extended Symbolic Constraints for Safe Diffusion-based Planning
- URL: http://arxiv.org/abs/2405.04235v2
- Date: Mon, 30 Sep 2024 08:42:00 GMT
- Title: LTLDoG: Satisfying Temporally-Extended Symbolic Constraints for Safe Diffusion-based Planning
- Authors: Zeyu Feng, Hao Luan, Pranav Goyal, Harold Soh,
- Abstract summary: In this work, we focus on generating long-horizon trajectories that adhere to novel static and temporally-extended constraints/instructions at test time.
We propose a data-driven diffusion-based framework, finiteDoG, that modifies the inference steps of the reverse process given an instruction specified using linear temporal logic.
Experiments in robot navigation and manipulation illustrate that the method is able to generate trajectories that satisfy formulae that specify obstacle avoidance and visitation sequences.
- Score: 12.839846486863308
- License:
- Abstract: Operating effectively in complex environments while complying with specified constraints is crucial for the safe and successful deployment of robots that interact with and operate around people. In this work, we focus on generating long-horizon trajectories that adhere to novel static and temporally-extended constraints/instructions at test time. We propose a data-driven diffusion-based framework, LTLDoG, that modifies the inference steps of the reverse process given an instruction specified using finite linear temporal logic ($\text{LTL}_f$). LTLDoG leverages a satisfaction value function on $\text{LTL}_f$ and guides the sampling steps using its gradient field. This value function can also be trained to generalize to new instructions not observed during training, enabling flexible test-time adaptability. Experiments in robot navigation and manipulation illustrate that the method is able to generate trajectories that satisfy formulae that specify obstacle avoidance and visitation sequences. Code and supplementary material are available online at https://github.com/clear-nus/ltldog.
Related papers
- DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications [59.01527054553122]
Linear temporal logic (LTL) has recently been adopted as a powerful formalism for specifying complex, temporally extended tasks in reinforcement learning (RL)
Existing approaches suffer from several shortcomings: they are often only applicable to finite-horizon fragments, are restricted to suboptimal solutions, and do not adequately handle safety constraints.
In this work, we propose a novel learning approach to address these concerns.
Our method leverages the structure of B"uchia, which explicitly represent the semantics of automat- specifications, to learn policies conditioned on sequences of truth assignments that lead to satisfying the desired formulae.
arXiv Detail & Related papers (2024-10-06T21:30:38Z) - Diffusion Meets Options: Hierarchical Generative Skill Composition for Temporally-Extended Tasks [12.239868705130178]
We propose a data-driven hierarchical framework that generates and updates plans based on instruction specified by linear temporal logic (LTL)
Our method decomposes temporal tasks into chain of options with hierarchical reinforcement learning from offline non-expert datasets.
We devise a determinantal-guided posterior sampling technique during batch generation, which improves the speed and diversity of diffusion generated options.
arXiv Detail & Related papers (2024-10-03T11:10:37Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.
We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.
We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - Scaling Learning based Policy Optimization for Temporal Logic Tasks by Controller Network Dropout [4.421486904657393]
We introduce a model-based approach for training feedback controllers for an autonomous agent operating in a highly nonlinear environment.
We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent's task objectives.
We introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling.
arXiv Detail & Related papers (2024-03-23T12:53:51Z) - Defining and executing temporal constraints for evaluating engineering
artifact compliance [56.08728135126139]
Process compliance focuses on ensuring that the actual engineering work is followed as closely as possible to the described engineering processes.
Checking these process constraints is still a daunting task that requires a lot of manual work and delivers feedback to engineers only late in the process.
We present an automated constraint checking approach that can incrementally check temporal constraints across inter-related engineering artifacts upon every artifact change.
arXiv Detail & Related papers (2023-12-20T13:26:31Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Signal Temporal Logic Neural Predictive Control [15.540490027770621]
We propose a method to learn a neural network controller to satisfy the requirements specified in Signal temporal logic (STL)
Our controller learns to roll out trajectories to maximize the STL robustness score in training.
A backup policy is designed to ensure safety when our controller fails.
arXiv Detail & Related papers (2023-09-10T20:31:25Z) - Learning Minimally-Violating Continuous Control for Infeasible Linear
Temporal Logic Specifications [2.496282558123411]
This paper explores continuous-time control for target-driven navigation to satisfy complex high-level tasks expressed as linear temporal logic (LTL)
We propose a model-free synthesis framework using deep reinforcement learning (DRL) where the underlying dynamic system is unknown (an opaque box)
arXiv Detail & Related papers (2022-10-03T18:32:20Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z) - Continuous Motion Planning with Temporal Logic Specifications using Deep
Neural Networks [16.296473750342464]
We propose a model-free reinforcement learning method to synthesize control policies for motion planning problems.
The robot is modelled as a discrete Markovtime decision process (MDP) with continuous state and action spaces.
We train deep neural networks to approximate the value function and policy using an actorcritic reinforcement learning method.
arXiv Detail & Related papers (2020-04-02T17:58:03Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.